精英家教网 > 高中数学 > 题目详情
12.如图,在△ABC中,E,F分别是边BC,AC上的点,且△ABE是边长为3的正三角形,EF∥AB,EF=1,则sinC等于(  )
A.$\frac{{\sqrt{7}}}{14}$B.$\frac{{\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{14}$D.$\frac{{\sqrt{21}}}{7}$

分析 首先根据三角形相似得到EC长度,结合余弦定理和正弦定理解答.

解答 解:在△ABC中,E,F分别是边BC,AC上的点,且△ABE是边长为3的正三角形,EF∥AB,EF=1,
所以三角形EFC中,∠FEC=60°,$\frac{EC}{BE+EC}=\frac{1}{3}$解得EC=$\frac{3}{2}$,
所以FC2=EF2+EC2-2EF×EC×cos60°=$\frac{7}{4}$,所以FC=$\frac{\sqrt{7}}{2}$,
由正弦定理得到$\frac{EF}{sinC}=\frac{FC}{sin∠FEC}$即$\frac{1}{sinC}=\frac{\frac{\sqrt{7}}{2}}{\frac{\sqrt{3}}{2}}$,得到sinC=$\frac{\sqrt{21}}{7}$;
故选:D.

点评 本题考查了利用余弦定理和正弦定理解三角形;熟练掌握两个定理的运用条件是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在平面四边形ABCD中,已知∠A=$\frac{π}{2}$,∠B=$\frac{2π}{3}$,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=$\frac{2π}{3}$,EC=$\sqrt{7}$.
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{1}{2}$x-sinx的大致图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在R上的奇函数,f(x)满足f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(37.5)等于-0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,圆O与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于点M(0,1).
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
(ⅰ)若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求$d_1^2+d_2^2$的最大值;
(ⅱ)若$3\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1与l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若抛物线y2=2px的焦点与椭圆$\frac{x^2}{5}+{y^2}=1$的右焦点重合,则p=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在二项式(x2-$\frac{1}{x}$)n的展开式中,所有二项式系数的和是32,则展开式中所有整式项的系数和为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0
(Ⅰ)求角C的大小.
(Ⅱ)若c=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c-a=2acosB,则$\frac{si{n}^{2}A}{sin(B-A)}$的取值范围是($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

同步练习册答案