精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\frac{1}{2}$x-sinx的大致图象可能是(  )
A.B.C.D.

分析 利用函数的奇偶性排除选项,利用导函数求解极值判断即可.

解答 解:函数f(x)=$\frac{1}{2}$x-sinx是奇函数,排除选项C.
f′(x)=$\frac{1}{2}$-cosx,x∈(0,$\frac{π}{3}$),f′(x)<0函数是减函数,
排除B,D.
故选:A.

点评 本题考查函数的单调性与函数的极值的关系,函数的图象的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若M={x|-2≤x≤2},N={x|y=log2(x-1)},则M∩N=(  )
A.{x|-2≤x<0}B.{x|-1<x<0}C.{-2,0}D.{x|1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,边长为2的正方形ABCD中,点E、点F分别是AB、BC上的点,且BE=BF,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A1
(Ⅰ)若点E是边AB的中点,求证:A1D⊥EF;
(Ⅱ)当$BE=\frac{1}{2}$时,求三棱锥A1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列选项中说法正确的是(  )
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}•\overrightarrow{b}>0$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角
C.若am2≤bm2,则a≤b
D.“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:

(Ⅰ)试确定图中实数a与b的值;
(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;
(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+8.
(I)求公差d的值;
(II )若a1=1,设Tn是数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,求使不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立的最大正整数m的值;
(III)设bn=$\frac{2+{a}_{n}}{{a}_{n}}$,若对任意的n∈N*,都有bn≤b4成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在△ABC中,E,F分别是边BC,AC上的点,且△ABE是边长为3的正三角形,EF∥AB,EF=1,则sinC等于(  )
A.$\frac{{\sqrt{7}}}{14}$B.$\frac{{\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{14}$D.$\frac{{\sqrt{21}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.宿州市日前提出,要提升市民的生活质量,改善民生,促进“中国梦”的实线,为此,某记者在街头随机采访了100名市民,根据他们对“中国梦”实线的信心情况进行统计分析,得到如下分布表:
信心级别  非常有信心有信心 不知道 没信心 
 信心指数(分数) 90 60 30 6
 人数(名) 42 38 14 6
(Ⅰ)以这100名市民信心指数为样本来估计市民的总体信心指数,若要从全市市民中随机任选3人进行信心跟踪,记ξ表示抽到信心级别为“非常有信心或有信心”市民人数,求ξ的分布列及期望;
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.

查看答案和解析>>

同步练习册答案