精英家教网 > 高中数学 > 题目详情
6.命题:若x12+y12<1,则过点(x1,y1)的直线与圆x2y2=1有两个公共点,将此命题类比到椭圆x2+2y2=1中,得到一个正确命题是若${{x}_{1}}^{2}$+2${{y}_{1}}^{2}$<1,则过点(x1,y1)的直线与椭圆x2+2y2=1有两个公共点.

分析 利用圆与椭圆,结合类比的方法,即可得出结论.

解答 解:由题意,将此命题类比到椭圆x2+2y2=1中,得到一个正确命题是:若${{x}_{1}}^{2}$+2${{y}_{1}}^{2}$<1,则过点(x1,y1)的直线与椭圆x2+2y2=1有两个公共点.
故答案为:若${{x}_{1}}^{2}$+2${{y}_{1}}^{2}$<1,则过点(x1,y1)的直线与椭圆x2+2y2=1有两个公共点.

点评 本题主要考查学生的知识量和知识迁移、类比的基本能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{S_4}{{{a_1}+{a_3}}}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:(a+1)x+y-2a+1=0,l2:2x+ay-1=0,a∈R,
(1)若l1与l2平行,求a的值;
(2)l1过定点A,l2过定点B,求A,B的坐标,并求过A,B两点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\frac{1}{3}{x}^{3}$-ax,g(x)=bx2+2b-1.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(Ⅱ)当a=1-2b且a>0时,若函数f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃)-2-3-5-6
销售额(万元)20232730
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间回归直线方程$\widehat{y}$=bx+a的系数$\widehat{b}$=-2.4,则预测平均气温为-8℃时该商品销售额为34.6万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点M的直角坐标是(1,-$\sqrt{3}$),则点M的极坐标为(  )
A.(2,-$\frac{π}{3}$)B.(2,$\frac{π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,2kπ+$\frac{π}{3}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,点M的坐标是(1,-$\sqrt{3}$),若以原点O为极点,x轴的非负半轴为极轴建立极坐标系,则点M的极坐标可以为(  )
A.(2,$\frac{π}{3}$)B.(2,$\frac{2π}{3}$)C.(2,-$\frac{π}{3}$)D.(2,2kπ+$\frac{π}{3}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,侧面PAB是边长为3的等边三角形,底面ABCD是正方形,M是侧棱PB上的点,N是底面对角线AC上的点,且PM=2MB,AN=2NC.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求证:MN∥平面PAD;
(Ⅲ)求点N到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(2x-3)3=a0+a1x+a2x2+a3x3,则(a0+a22-(a1+a32的值为(  )
A.-125B.0C.2D.125

查看答案和解析>>

同步练习册答案