精英家教网 > 高中数学 > 题目详情
画出一个能够判断任意三个正数能否构成三角形的程序框图,如果构成三角形并输出三角形的形状(锐角、直角或钝角三角形)
考点:设计程序框图解决实际问题
专题:算法和程序框图
分析:先找出最大边,验证这3个数中任意两个数的和是否大于第3个数,再判断最大角的余弦值从而判断三角形的形状即可.
解答: 解:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.
程序框图如下:
点评:本题主要考查了程序框图和算法解决实际问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分.已知甲、乙两位选手抢到答题权的概率均相同,且每道题是否答对的机会是均等的,若比赛进行两轮.
(1)求甲抢到1题的概率;
(2)求甲得到10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+mx+8y-8=0和圆C2:x2+y2-4x+ny-2=0的公共弦AB所在直线方程为x+2y-1=0,两圆C1,C2的圆心距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b是异面直线,且a⊥b,
e 1
e 2
分别为取直线a、b上的单位向量,且a=2
e1
+3
e 2
,b=k
e 1
-4
e 2
,a⊥b,则实数k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的终边上有一点P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=2cosθ
y=2+2sinθ
(θ为参数)
,若将坐标轴原点平移到点O'(1,2),则圆C在新坐标系中的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=
3
,|
b
|=2,
a
b
=-3,则|
a
+2
b
|=(  )
A、1
B、
7
C、4+
3
D、2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

非零向量
a
b
满足2
a
b
=
a
2
b
2
,|
a
|+|
b
|=2,则
a
b
的夹角θ的最小值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
36
+
y2
9
=1上有动点P,E(3,0),则|PE|的最小值为
 

查看答案和解析>>

同步练习册答案