精英家教网 > 高中数学 > 题目详情
19.在△ABC中,a,b,c分别是角A,B,C的对边,且$\frac{cosB}{cosC}$=-$\frac{b}{2a+c}$.
(1)求角B的大小;
(2)若a+c=2,S△ABC=$\frac{\sqrt{3}}{4}$,求b的值.

分析 (1)利用正弦定理、和差公式即可得出;
(2)利用三角形面积计算公式、余弦定理即可得出.

解答 解:(1)在△ABC中,∵$\frac{cosB}{cosC}$=-$\frac{b}{2a+c}$,由正弦定理可得:$\frac{cosB}{cosC}$=-$\frac{sinB}{2sinA+sinC}$.
化为:2sinAcosB+sinCcosB+cosCsinB=0,
2sinAcosB+sin(C+B)=0,
∴2sinAcosB+sinA=0,
∵sinA≠0,
∴cosB=-$\frac{1}{2}$,又B∈(0,π),∴B=$\frac{2π}{3}$.
(2)∵${S_{△ABC}}=\frac{{\sqrt{3}}}{4}$=$\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{4}ac$,
∴ac=1.
∴b2=a2+c2-2accosB=a2+c2+ac=(a+c)2-ac=3,
∴$b=\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\sqrt{2}(cosθ+sinθ)}\\{y=\sqrt{2}(cosθ-sinθ)}\end{array}\right.$(θ为参数),曲线C与l的交点的极坐标为(2,$\frac{π}{3}$)和(2,$\frac{π}{6}$),
(1)求直线l的普通方程;
(2)设P点为曲线C上的任意一点,求P点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\frac{\overline z}{3+i}$=1+i,则复数z在复平面上对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求两条垂直的直线2x+y+2=0与ax-y-2=0的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=logax(a>0且a≠1)的图象过($\frac{1}{4}$,2)点.
(1)求a的值;
(2)若g(x)=f(3-x)-f(3+x),求g(x)解析式与定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={0,1,2,3,4,5},B=﹛5,6﹜,C=﹛(x,y)|x∈A,y∈A,x+y∈B﹜,则C中所含元素的个数为(  )
A.5B.6C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面关于复数$z=\frac{2}{1+i}$的四个命题:p1:|z|=2,${p_2}:{z^2}=2i$,p3:z的共轭复数为1+i,p4:z在复平面内对应点位于第四象限.其中真命题为(  )
A.p2、p3B.p1、p4C.p2、p4D.p3、p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆的方程为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1,则此椭圆的长轴长为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.半径为3的球的表面积为(  )
A.B.C.12πD.36π

查看答案和解析>>

同步练习册答案