分析 由题意知,lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,依据根与系数的关系得lgα+lgβ=-(lg7+lg5),再根据对数的运算性质可求得α•β的值.
解答 解∵方程lg2x+(lg7+lg5)lgx+lg7•lg5=0的两根为α、β,
∴lgα,lgβ是一元二次方程x2+(lg7+lg5)x+lg7•lg5=0的两根,
∴lgα+lgβ=-(lg7+lg5),
∴lgαβ=-lg35,
∴α•β的值是$\frac{1}{35}$,
故答案为:$\frac{1}{35}$
点评 本题的考点是对数的运算性质,考查利用根系关系与对数的运算法则求值,求解本题的一个关键是意识到lgα,lgβ二次函数的两个根.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) | D. | ($\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | $-\frac{181}{25}$ | C. | -$\frac{19}{25}$ | D. | $\frac{19}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,15] | B. | [5,15] | C. | [5,21] | D. | (5,21) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com