分析 由已知得$πcosx=\frac{π}{2}$,或$πcosx=-\frac{π}{2}$,由此能求出结果.
解答 解:∵集合{x|cos(πcosx)=0,x∈[0,π]},
∴$πcosx=\frac{π}{2}$,或$πcosx=-\frac{π}{2}$,
∴cosx=$\frac{1}{2}$或cosx=-$\frac{1}{2}$,
∴x=$\frac{π}{3}$或x=$\frac{2π}{3}$,
∴集合{x|cos(πcosx)=0,x∈[0,π]}={$\frac{π}{3}$,$\frac{2π}{3}$}.
故答案为:{$\frac{π}{3}$,$\frac{2π}{3}$}.
点评 本题考查集合的表示,是基础题,解题时要认真审题,注意三角函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{42}$ | B. | $\frac{1}{2}$ | C. | $\frac{11}{21}$ | D. | $\frac{10}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 恒为偶数 | B. | 恒为奇数 | C. | 不超过2017 | D. | 可超过2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)={(\sqrt{x})^2}$是偶函数 | B. | $f(x)=\frac{{{x^2}-x}}{x-1}$是奇函数 | ||
| C. | $f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是偶函数 | D. | $f(x)=\frac{{\sqrt{4-{x^2}}}}{|x-3|-3}$是奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com