精英家教网 > 高中数学 > 题目详情

【题目】已知 ,函数 的最小值为4.
(1)求 的值;
(2)求 的最小值.

【答案】
(1)解:因为,
所以 ,当且仅当 时,等号成立,又
所以 ,所以 的最小值为 ,所以 .
(2)解:由(1)知 .

当且仅当 时, 的最小值为 .
【解析】(1)根据绝对值的性质,可得| x + a | + | x b | ≥ | a b | = | a + b | ,所以 ,当且仅当 时,等号成立,又 ,所以 ,所以 的最小值为 ,所以 .
(2)因为 a + b = 4 , b = 4 a ,将b参数化掉最后变成一个一元二次方程,就可以求出其最小值.
【考点精析】解答此题的关键在于理解复合函数单调性的判断方法的相关知识,掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”,以及对二次函数在闭区间上的最值的理解,了解当时,当时,;当时在上递减,当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,且f(2017)=2016,则f(﹣2017)=(  )
A.﹣2014
B.﹣2015
C.﹣2016
D.﹣2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+a与抛物线y2=5ax(a>0)相交于A,B两点,C(0,2a),给出下列4个命题:
p1:△ABC的重心在定直线7x﹣3y=0上,p2:|AB| 的最大值为2
p3:△ABC的重心在定直线 3x﹣7y=0上;p4:|AB| 的最大值为2
其中的真命题为(  )
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>0,b>0,且
(I) 求a3+b3的最小值;
(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面梯形 中, ,平面 平面 是等边三角形,已知

(1)求证:平面 平面
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是( )
①命题“x0∈R, +1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:m∈R且m+1≤0;命题q:x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两个不同点 满足条件:① 都在函数 的图像上;② 关于原点对称,则称点对 是函数 的一对“友好点对”(注:点对 看作同一对“友好点对”).已知函数 ,则此函数的“友好点对”有( )对.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 ( 是参数)和定点 , 是圆锥曲线的左、右焦点.
(1)求经过点 且垂直于直线 的直线 的参数方程;
(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,求直线 的极坐标方程.

查看答案和解析>>

同步练习册答案