精英家教网 > 高中数学 > 题目详情
18.设集合M={-1,0,1},N={x|x2+x≤0},则M∩N=(  )
A.{-1}B.{-1,0}C.{0,1}D.{0}

分析 先分别求出集合M,N,由此能求出M∩N.

解答 解:∵集合M={-1,0,1},
N={x|x2+x≤0}={x|-1≤x≤0},
∴M∩N={-1,0}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(I)求函数f(x)的最小正周期及单调递增区间;
(II)求函数f(x)在区间[0,$\frac{π}{2}$]的最大值及所对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:关于x的不等式sinx≥a恒成立,命题q:y=-(5-2a)x为减函数,若命题p,q中至少有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=-1-i(i为虚数单位),z的共轭复数为$\overline{z}$,则|z•$\overline{z}$|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则Sn取最大值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2+kx+5,g(x)=4x,设当x≤1时,函数y=4x-2x+1+2的值域为D,且当x∈D时,恒有f(x)≤g(x),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C的方程:x2+y2-2x-4y+m=0
(1)求m的取值范围;
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{{4\sqrt{5}}}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数)使得f(x)≥g(x)对一切实数x都成立,则称g(x)为f(x)的一个承托函数,现在如下函数:①f(x)=x3;②f(x)=2x;③f(x)=$\left\{\begin{array}{l}lgx,x>0\\ 0,x≤0.\end{array}$;④f(x)=x+sinx则存在承托函数的f(x)的序号为(  )
A.①④B.②④C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设y=f(x)在区间[0,1]上是非负连续函数.
试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形的面积.

查看答案和解析>>

同步练习册答案