精英家教网 > 高中数学 > 题目详情
10.变换T1是逆时针旋转$\frac{π}{2}$角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=$[\begin{array}{l}{1}&{1}\\{0}&{1}\end{array}]$.
(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;
(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.

分析 (1)变换T1对应的变换矩阵M1=$[\begin{array}{l}{cos\frac{π}{2}}&{-sin\frac{π}{2}}\\{sin\frac{π}{2}}&{cos\frac{π}{2}}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$,M1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{2}\end{array}]$,即可求得点P在T1作用下的点P′的坐标;
(2)M=M2•M1=$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$,由$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,求得$\left\{\begin{array}{l}{{x}_{0}=y}\\{{y}_{0}=y-x}\end{array}\right.$,代入y=x2,即可求得经过变换T2所得曲线的方程.

解答 解:(1)T1是逆时针旋转$\frac{π}{2}$角的旋转变换,M1=$[\begin{array}{l}{cos\frac{π}{2}}&{-sin\frac{π}{2}}\\{sin\frac{π}{2}}&{cos\frac{π}{2}}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$,
M1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{2}\end{array}]$,
所以点P在T1作用下的点P′的坐标是(-1,2);
(2)M=M2•M1=$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$,
设$[\begin{array}{l}{x}\\{y}\end{array}]$是变换后图象上任一点,与之对应的变换前的点是$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,
则M$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
也就是$\left\{\begin{array}{l}{{x}_{0}-{y}_{0}=x}\\{{x}_{0}=y}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}_{0}=y}\\{{y}_{0}=y-x}\end{array}\right.$,
所以所求的曲线方程为y-x=y2

点评 本题考查矩阵的变换,考查矩阵的乘法,考查点在变换下点的坐标的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S25的值为45$\sqrt{3}$-5或-45$\sqrt{3}$-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A($\sqrt{2}$,0)与圆O:x2+y2=1上B,C两点共线,当△OBC的面积最大时,O到AB的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a为正整数,f(x)=ax2+4ax-2x+4a-7,若y=f(x)至少有一个零点x0且x0为整数,则a的取值为1或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于函数f(x),若存在x0∈Z,满足|f(x0)|≤$\frac{1}{4}$,则称x0为函数的一个“近零点”,已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的取值范围是(  )
A.[$\frac{2}{9}$,$\frac{1}{4}$)B.[$\frac{2}{9}$,$\frac{1}{4}$]C.(0,$\frac{2}{9}$]D.(0,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x2+ax-2a-3)ex,其中a∈R,e=2.71828…为自然对数的底数.
(1)讨论函数f(x)的单调性;
(2)当x∈[0,1]时,若函数f(x)的图象恒在直线y=e的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线x+y-2=0在矩阵A=$[\begin{array}{l}{1}&{a}\\{1}&{2}\end{array}]$对应的变换作用下得到直线x+y-b=0(a,b∈R),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线L:y=x+b与圆O:x2+y2=4相交于A、B两点,且△AOB的面积等于$\sqrt{3}$,则常数b的值为±$\sqrt{6}$或±$\sqrt{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-2x)4展开式中第3项的二项式系数为(  )
A.6B.-6C.24D.-24

查看答案和解析>>

同步练习册答案