分析 (1)变换T1对应的变换矩阵M1=$[\begin{array}{l}{cos\frac{π}{2}}&{-sin\frac{π}{2}}\\{sin\frac{π}{2}}&{cos\frac{π}{2}}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$,M1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{2}\end{array}]$,即可求得点P在T1作用下的点P′的坐标;
(2)M=M2•M1=$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$,由$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,求得$\left\{\begin{array}{l}{{x}_{0}=y}\\{{y}_{0}=y-x}\end{array}\right.$,代入y=x2,即可求得经过变换T2所得曲线的方程.
解答 解:(1)T1是逆时针旋转$\frac{π}{2}$角的旋转变换,M1=$[\begin{array}{l}{cos\frac{π}{2}}&{-sin\frac{π}{2}}\\{sin\frac{π}{2}}&{cos\frac{π}{2}}\end{array}]$=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$,
M1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{2}\end{array}]$,
所以点P在T1作用下的点P′的坐标是(-1,2);
(2)M=M2•M1=$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$,
设$[\begin{array}{l}{x}\\{y}\end{array}]$是变换后图象上任一点,与之对应的变换前的点是$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,
则M$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,$[\begin{array}{l}{1}&{-1}\\{1}&{0}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
也就是$\left\{\begin{array}{l}{{x}_{0}-{y}_{0}=x}\\{{x}_{0}=y}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}_{0}=y}\\{{y}_{0}=y-x}\end{array}\right.$,
所以所求的曲线方程为y-x=y2.
点评 本题考查矩阵的变换,考查矩阵的乘法,考查点在变换下点的坐标的求法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{2}{9}$,$\frac{1}{4}$) | B. | [$\frac{2}{9}$,$\frac{1}{4}$] | C. | (0,$\frac{2}{9}$] | D. | (0,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com