精英家教网 > 高中数学 > 题目详情
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(1)求证:平面A1ED⊥平面A1AEF;
(2)设二面角A1-ED-A的大小为α,直线AD与平面A1ED所成的角为β,求sin(α+β)的值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间角
分析:(1)由已知中AB=2,BC=4,∠ABC=60°,点E为BC中点,我们易得到∠AEB=60°,∠CED=30°,进而得到AE⊥ED,又由AA1⊥底面ABCD,得AA1⊥ED,结合线面垂直的判定定理得到ED⊥平面AA1EF,再由面面垂直的判定定理,即可得到平面A1ED⊥平面A1AEF.
(2)过A作A1E的垂线,垂足为H,连结HD,由已知条件推导出∠A1ED为二面角A1-ED-A的平面角α,∠ADH为直线AD与平面A1ED所成的角β,由此能求出sin(α+β)=1.
解答: (1)证明:∵AB=2,BC=4,∠ABC=60°,点E为BC中点,
∴△ABC为等边三角形,∠AEB=60°,
△CDE中,∠CED=30°,∴AE⊥ED,
∵AA1⊥底面ABCD,∴AA1⊥ED,
又由AE∩AA1=A,∴ED⊥平面AA1EF,
又∵ED?平面A1ED,
∴平面A1ED⊥平面A1AEF.
(2)∵ED⊥平面A1AEF,∴A1E⊥ED,AE⊥ED,
∴∠A1ED为二面角A1-ED-A的平面角,∴∠A1EA=α,
∴sinα=
AA1
A1E
=
2
5
5
,cosα=
5
5

过A作A1E的垂线,垂足为H,连结HD,
∵ED⊥平面A1AEF,∴ED⊥AH,
∴AH⊥平面A1ED,
∴∠ADH为直线AD与平面A1ED所成的角β,即∠ADH=β,
∴AH=
4
5
5
,sinβ=
5
5
=cosα,
∴α+β=90°,
∴sin(α+β)=1.
点评:本题考查平面与平面垂直的证明,考查二面角的求法及其应用,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b∈R,i为虚数单位,且a+bi=
1-i
2i
,则(  )
A、a=-
1
2
,b=
1
2
B、a=-
1
2
,b=-
1
2
C、a=
1
2
,b=-
1
2
D、a=
1
2
,b=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={2,3,5,7,11,13,17,19},A∩B={3,5},∁UA={7,19},求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex
1+ax
,其中a为正实数,若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x4-2x2+1>x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在坐标轴上,与过点P(1,2)且斜率为-2的直线l相交所得的弦恰好被点P平分,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(C-A)=1,sinB=
1
3
,AC=
6
,求BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上任一点.
(Ⅰ)求证:无论E点取在何处恒有BC⊥DE;
(Ⅱ)设
SE
EB
,当平面EDC⊥平面SBC时,求λ的值;
(Ⅲ)在(Ⅱ)的条件下求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机变量ξ服从正态分布N(1,σ2),且P(ξ<0)=0.3,则P(0≤ξ≤1)=
 

查看答案和解析>>

同步练习册答案