精英家教网 > 高中数学 > 题目详情
随机变量ξ服从正态分布N(1,σ2),且P(ξ<0)=0.3,则P(0≤ξ≤1)=
 
考点:正态分布曲线的特点及曲线所表示的意义
专题:计算题,概率与统计
分析:随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到结果.
解答: 解:随机变量ξ服从正态分布N(1,σ2),
∴曲线关于x=1对称,
∵P(ξ<0)=0.3,
∴P(0≤ξ≤1)=0.5-0.3=0.2,
故答案为:0.2.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(1)求证:平面A1ED⊥平面A1AEF;
(2)设二面角A1-ED-A的大小为α,直线AD与平面A1ED所成的角为β,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12).
(1)求cos∠AOB和△AOB的面积;
(2)若四边形AEBF为平行四边形,且
EF
=(1,1),求平行四边形AEBF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷等比数列{an}中,首项a1,公比q>0,且
lim
n→∞
(
a1
1+q
+qn)=
1
2
,则a1的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3sin2α+2sin2β=1,3(sinα+cosα)2-2(sinβ+cosβ)2=1,则cos2(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD的所有棱长都是1,则截面PAC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+
y2
3
=1
的右焦点为F点,P为椭圆C上一动点,定点A(2,4),则|PA|-|PF|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m是正整数,若(x2+
1
x2
m的展开式中的常数项与(x+
1
x2
m的展开式的x-3项的系数相等,则m的值为(  )
A、4B、6C、7D、8

查看答案和解析>>

同步练习册答案