精英家教网 > 高中数学 > 题目详情
15.与x轴切于负半轴,圆心在直线y=3x上,且被直线x-y=0截得的弦长为$2\sqrt{7}$的圆的方程为(x+1)2+(y+3)2=9.

分析 根据题意,设圆心为C(a,b),算出点C到直线x-y=0的距离,根据垂径定理建立方程,由于所求的圆与x轴相切,所以r2=b2,又因为所求圆心在直线3x-y=0上,则3a-b=0,即可得到所求圆的方程.

解答 解:设所求的圆的方程是(x-a)2+(y-b)2=r2
则圆心(a,b)到直线x-y=0的距离为$\frac{|a-b|}{\sqrt{2}}$,
所以($\frac{|a-b|}{\sqrt{2}}$)2+7=r2,即2r2=(a-b)2+14-------①
由于所求的圆与x轴相切,所以r2=b2-----------
又因为所求圆心在直线3x-y=0上,则3a-b=0---------③
联立①②③,解得a=1,b=3,r2=9或a=-1,b=-3,r2=9.
因为与x轴切于负半轴,
所有所求的圆的方程是(x+1)2+(y+3)2=9.
故答案为:(x+1)2+(y+3)2=9.

点评 本题给出圆满足的条件,求圆的方程.着重考查了圆的标准方程、点到直线的距离公式、直线与圆的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知扇形的周长是6cm,面积是2cm2,则扇形的中心角的弧度数是(  )
A.1B.4C.1或4D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P,Q分别是圆(x+2)2+(y-7)2=1与抛物线y2=x上的点,则P,Q两点的最小距离为(  )
A.$\sqrt{73}$B.$\sqrt{73}$-1C.3$\sqrt{5}$D.3$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点坐标为(b,c),则a+d=(  )
A.3B.$\frac{9}{2}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log0.2(x2-6x+8)的单调递增区间为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,则不同的分配方案共有(  )
A.10种B.20种C.40种D.80种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,则必有(  )
A.$\overrightarrow{AD}$=$\overrightarrow{CB}$B.$\overrightarrow{OA}$=$\overrightarrow{OC}$C.$\overrightarrow{AC}$=$\overrightarrow{DB}$D.$\overrightarrow{DO}$=$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x3+3x2+3ax-4既有极大值又有极小值,则函数g(x)=x+$\frac{a}{x}$-2a在区间(1,+∞)上一定(  )
A.有最小值B.有最大值C.是减函数D.是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题
(1)${(124+22\sqrt{3})^{\frac{1}{2}}}-{27^{\frac{1}{6}}}+{16^{\frac{3}{4}}}-2{({8^{-\frac{2}{3}}})^{-1}}$;
(2)lg5(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.06.

查看答案和解析>>

同步练习册答案