若等边三角形ABC的边长为2
,平面内一点M满足
=![]()
+![]()
,则
·
=________.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:填空题
数列{an}满足a1=2且对任意的m,n∈N*,都有
=an,则a3=________;{an}的前n项和Sn=________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-4数系的扩充与复数的引入(解析版) 题型:解答题
数z1=3+4i,z2=0,z3=c+(2c-6)i在复平面内对应的点分别为A、B、C,若∠BAC是钝角,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:解答题
在△ABC中,角A、B、C的对边分别为a、b、c.若
·
=
·
=k(k∈R).
(1)判断△ABC的形状;
(2)若k=2,求b的值.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:选择题
设O点在△ABC内部,且有
+
+2
=0,则△ABC的面积与△AOC的面积的比值为( )
A.4 B.
C.2
D.3
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-2平面向量的基本定理及坐标表示(解析版) 题型:解答题
已知向量a=(1,2),b=(2,-2).
(1)设c=4a+b,求(b·c)a;
(2)若a+λb与a垂直,求λ的值;
(3)求向量a在b方向上的投影.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-2平面向量的基本定理及坐标表示(解析版) 题型:选择题
已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为( )
A.(-
,
) B.(
,-
)
C.(
,
) D.(-
,-
)
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-8解三角形应用举例(解析版) 题型:解答题
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-6简单的三角恒等变换(解析版) 题型:选择题
已知cos(α-
)+sinα=
,则sin(α+
)的值是( )
A.-
B.
C.-
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com