精英家教网 > 高中数学 > 题目详情
解不等式:|
x
x+2
|>
x
x+2
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由不等式可得可得
x
x+2
<0,即 x(x+2)<0,由此求得它的解集.
解答: 解:由|
x
x+2
|>
x
x+2
可得
x
x+2
<0,即 x(x+2)<0,解得-2<x<0,
故不等式的解集为(-2,0).
点评:本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1的方向向量为
a
=(1,3),且过点A(-2,3),将直线x-2y-1=0绕着它与x轴的交点B按逆时针方向旋转一个锐角α(tanα=
1
3
)得到直线l2,直线l3:(1-3k)x+(k+1)y-3k-1=0(k∈R).
(1)求直线l1和直线l2的方程;
(2)当直线l1,l2,l3所围成的三角形的面积为3时,求直线l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知在等差数列{an}中,d=
1
3
,n=37,Sn=629,则求a1和an
(2)已知在等比数列{bn}中,b1=-1,b4=64,求q和S4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,AB∥FE,G、H分别为AB、CF的中点,AB=2,AD=EF=1,∠AFB=
π
2

(1)求证:GH∥平面DAF;
(2)AF⊥平面BFC;
(3)求平面CBF将几何体EFABCD分成两个锥体F-ABCD与F-BCE的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足a1+a2+a3=14,且a2+1是a1,a3的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an,求数列{bn}的前n项和Sn
(3)若存在n∈N*,使得Sn+1-2≤8n3λ成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+ax+2lnx,其中a为实数;
(1)若a=-2,求函数y=f(x)在点x=1处的切线方程;
(2)试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足a>c-2且3a+3b<31+c,则
3a-3b
3c
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N)个点,相应的图案中总的点数记为an,则
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2013a2014
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
lim
n→∞
2-3
6
+
22-32
62
+
23-33
63
+…+
2n-3n
6n
)=
 

查看答案和解析>>

同步练习册答案