精英家教网 > 高中数学 > 题目详情
如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.
考点:直线与平面所成的角
专题:计算题,证明题,空间位置关系与距离,空间角
分析:(1)运用线面平行的判定定理和性质定理即可证得;
(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos<n,
BC
|,求出角α;设H(u,v,w),再设
PH
PC
(0<λ<1)
,用λ表示H的坐标,再由n
AH
=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.
解答: (1)证明:在正方形AMDE中,∵B是AM的中点,
∴AB∥DE,又∵AB?平面PDE,∴AB∥平面PDE,
∵AB?平面ABF,且平面ABF∩平面PDE=FG,
∴AB∥FG;
(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,
如图建立空间直角坐标系Axyz,则A(0,0,0),
B(1,0,0),C(2,1,0),P(0,0,2),
E(0,2,0),F(0,1,1),
BC
=(1,1,0)

设平面ABF的法向量为n=(x,y,z),则
n•
AB
=0
n•
AF
=0
x=0
y+z=0

令z=1,则y=-1,∴n=(0,-1,1),
设直线BC与平面ABF所成的角为α,则
sinα=|cos<n,
BC
|=|
n•
BC
|n|•|
BC
|
|=
1
2

∴直线BC与平面ABF所成的角为
π
6

设H(u,v,w),∵H在棱PC上,∴可设
PH
PC
(0<λ<1)

即(u,v,w-2)=λ(2,1,-2),∴u=2λ,v=λ,w=2-2λ,∵n是平面ABF的法向量,
∴n
AH
=0,即(0,-1,1)•(2λ,λ,2-2λ)=0,解得λ=
2
3
,∴H(
4
3
2
3
2
3
),
∴PH=
(
4
3
)2+(
2
3
)2+(-
4
3
)2
=2.
点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+3x,其中a≠0.
(Ⅰ)当a=2时,求不等式f(x)≥3x+2的解集;
(Ⅱ)若不等式f(x)≤0的解集包含{x|x≤-1},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O为坐标原点,双曲线C1
x2
a
2
1
-
y2
b
2
1
=1(a1>0,b1>0)和椭圆C2
y2
a
2
2
+
x2
b
2
2
=1(a2>b2>0)均过点P(
2
3
3
,1),且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.
(Ⅰ)求C1、C2的方程;
(Ⅱ)是否存在直线l,使得l与C1交于A、B两点,与C2只有一个公共点,且|
OA
+
OB
|=|
AB
|?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若
cosA
sinA
+
cosC
sinC
=
1
sinB

(1)求证:0<B≤
π
3

(2)若sinB=
7
4
,且
BA
BC
=
3
2
,求|
BC
+
BA
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,
(ⅰ)证明直线AE过定点,并求出定点坐标;
(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)2+alnx,a∈R.
(1)求函数f(x)的单调区间;
(2)求证:“0<a<
4
9
”是函数f(x)有三个零点的必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xcosx-sinx,x∈[0,
π
2
]
(1)求证:f(x)≤0;
(2)若a<
sinx
x
<b对x∈(0,
π
2
)上恒成立,求a的最大值与b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的x∈R都有f(x+3)=-f(x+1),且f(2)=2014,则f[f(2014)+2]+3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
x≥0
x-2y≥0
x-y≤1
,则目标函数z=2x+y的最大值为
 

查看答案和解析>>

同步练习册答案