精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设bn=${a_n}{log_{\frac{1}{2}}}\frac{1}{a_n}$,试求{bn}的前n项和Tn

分析 (1)先由数列递推式求得首项,再取n=n-1得另一递推式,两式作差可得{an}是首项和公比都为2的等比数列,则其通项公式可求;
(2)把数列{an}的通项公式代入bn=${a_n}{log_{\frac{1}{2}}}\frac{1}{a_n}$,整理后利用错位相减法求{bn}的前n项和Tn

解答 解:(1)当n=1时,由Sn=2an-2,及a1=S1 可得a1=2,
由Sn=2an-2①,可得Sn-1=2an-1-2(n≥2),
由①-②得:an=2an-1(n≥2).
故{an}是首项和公比都为2的等比数列,通项公式为${a}_{n}={2}^{n}$;
(2)由(1)可得:bn=${a_n}{log_{\frac{1}{2}}}\frac{1}{a_n}$=${2}^{n}•lo{g}_{\frac{1}{2}}\frac{1}{{2}^{n}}=n•{2}^{n}$.
则${T}_{n}=1×2+2×{2}^{2}+3×{2}^{3}+…+n×{2}^{n}$.
$2{T}_{n}=1×{2}^{2}+2×{2}^{3}$+3×24+…+n×2n+1
两式相减可得:$-{T}_{n}=2+{2}^{2}+{2}^{3}+…+{2}^{n}-n×{2}^{n+1}$=$\frac{2(1-{2}^{n})}{1-2}-n×{2}^{n+1}=(1-n)•{2}^{n+1}-2$.
∴${T}_{n}=(n-1)•{2}^{n+1}+2$.

点评 本题考查了数列递推式,考查了等比数列的通项公式,训练了错位相减法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(Ⅰ)用五点法作出f(x)在一个周期内的简图;
(Ⅱ)将函数f(x)的图象向左平移$\frac{π}{6}$个单位后再向上平移1个单位,得到函数g(x)的图象,求函数g(x)在[0,2π]内所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是定义在R上的奇函数,当x∈(0,1]时,f(x)=x+3,则f(-$\frac{1}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-$\frac{7}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x-1.
(1)将函数f(x)化为Asin(ωx+φ)的形式;
(2)求函数的最大值及最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥BC,且AB=$\sqrt{3}$,BC=4,AA1=3,M为棱AA1的中点,且AB1∩BM=P,AC1∩CM=Q.
(Ⅰ)求证:PQ∥平面BCC1B1
(Ⅱ)求多面体PQCBB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-m≤0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y的最大值为7,则目标函数取最小值时的最优解为(1,-1),实数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线$\left\{\begin{array}{l}x=-1+2t\\ y=3-2t\end{array}\right.(t$为参数)与曲线$\left\{\begin{array}{l}x=4+acosθ\\ y=asinθ\end{array}\right.(θ$为参数,a>0)有且只有一个公共点,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆锥曲线mx2+y2=1的离心率为$\sqrt{2}$,则实数m的值为(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是公比大于1的等比数列,其前n项和为Sn,且a1,a3是方程x2-5x+4=0的两根,则S3=7.

查看答案和解析>>

同步练习册答案