精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-m≤0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y的最大值为7,则目标函数取最小值时的最优解为(1,-1),实数m的值为4.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,先求目标函数取得最大值时的最对应的m的值,即可得到结论.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大为2x+y=7.
由$\left\{\begin{array}{l}{2x+y=7}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即C(3,1),
同时C也在x+y-m=0上,
解得m=x+y=3+1=4.
由当直线经过点B时,直线y=-2x+z的截距最小,
由$\left\{\begin{array}{l}{x=1}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,即B(1,-1),
故答案为:(1,-1),4

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,设抛物线y=-x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点,则点P落在△AOB内的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{sinx}{{e}^{x}}$.
(1)若曲线y=f(x)在点(x0,f(x0))处的切线平行于x轴,求x0的值;
(2)若函数f(x)在区间($\frac{a-1}{4}$π,$\frac{2a-1}{4}$π)(a>0)上的增函数,求实数a的取值范围;
(3)当x∈[0,$\frac{π}{2}$]时,不等式f(x)≤bx恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若b=5,sinBsinC=$\frac{5}{7}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设bn=${a_n}{log_{\frac{1}{2}}}\frac{1}{a_n}$,试求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点与l平行的直线与椭圆交于点P.证明:|AM|•|AN|=2|OP|2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题为真命题的序号是(  )
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若l∥α,α∥β,则l∥β;
④若l⊥α,l∥m,α∥β,则m⊥β.
A.①④B.①③C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆心在原点且与直线x+y-4=0相切的圆的方程为x2+y2=8.

查看答案和解析>>

同步练习册答案