精英家教网 > 高中数学 > 题目详情
3.在复平面上,复数z1=1+2i,z2=-2+i,z3=$\sqrt{2}-\sqrt{3}$i所对应的点分别是Z1,Z2,Z3,则下列复数所对应的点与这三个点不在同一个圆上的是(  )
A.$z=\sqrt{5}$B.z=5iC.$z=\sqrt{3}+\sqrt{2}i$D.z=-1-2i

分析 根据复数的几何意义计算复数的模长即可.

解答 解:|z1|=$\sqrt{5}$,|z2|=$\sqrt{5}$,|z3|=$\sqrt{5}$,
∴Z1,Z2,Z3,都在以圆的为圆心,半径为$\sqrt{5}$的圆上,
∵z=5i的模长|z|=5,
∴z=5i对应的点不在同一圆上,
故选:B.

点评 本题主要考查复数的几何意义以及模长的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.为了得到函数$y={(\frac{1}{3})^x}$的图象,可以把函数$y=3×{(\frac{1}{3})^x}$的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移3个单位D.向右平移3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求向量$\overrightarrow{a}$+$\overrightarrow{b}$在向量$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.袋中有3个黑球7个红球,从中任取3个,以下选项可以作为随机变量的是(  )
A.取到的球的个数B.取到红球的个数
C.至少取到一个红球D.至少取到一个红球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若α∈(0,π),且角α的终边与角5α的终边相同,则α=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将演绎推理“函数y=2x+1的图象是一条直线.”恢复成完全的三段论形式,其中大前提是一次函数的图象是一条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=x2与y=kx(k>0)的图象所围成的封闭区域的面积为$\frac{9}{2}$,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.角A、B、C是△ABC的内角,C=$\frac{π}{2}$,A<B,向量$\overrightarrow{a}$=(2cosA,1),$\overrightarrow{b}$=($\frac{1}{2}$,sinA),且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{7}{5}$,
(1)求sinA的值;
(2)求cos2($\frac{π}{4}$-$\frac{B}{2}$)+sin$\frac{A}{2}$cos$\frac{A}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)的图象在点M(-1,f(-1))处的切线的方程是y=2x-1,则f(-1)+f′(-1)=-1.

查看答案和解析>>

同步练习册答案