| A. | $(-∞,-\frac{{{e^2}+1}}{e})$ | B. | $(\frac{{{e^2}+1}}{e},+∞)$ | C. | $(-\frac{{{e^2}+1}}{e},-2)$ | D. | $(2,\frac{{{e^2}+1}}{e})$ |
分析 令y=xex,则y'=(1+x)ex,求出极值点,判断函数的单调性,作出y=xex图象,利用图象变换得f(x)=|xex|图象,令f(x)=m,则关于m方程h(m)=m2-tm+1=0两根分别在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$,满足g(x)=-1的x有4个,列出不等式求解即可.
解答
解:令y=xex,则y'=(1+x)ex,由y'=0,得x=-1,
当x∈(-∞,-1)时,y'<0,函数y单调递减,
当x∈(-1,+∞)时,y'>0,函
数y单调递增.作出y=xex图象,
利用图象变换得f(x)=|xex|图象(如图10),
令f(x)=m,则关于m方程h(m)=m2-tm+1=0
两根分别在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$时(如图11),
满足g(x)=-1的x有4个,由$h(\frac{1}{e})=\frac{1}{e^2}-\frac{1}{e}t+1<0$,
解得$t>\frac{{{e^2}+1}}{e}$. ![]()
故选:B.
点评 本题考查函数的导数的应用,函数的单调性以及函数的极值,函数的图象的变换,函数零点个数,考查函数与方程的综合应用,数形结合思想以及转化思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0≥0且x0∈R,${2^{x_0}}>{x_0}^2$ | B. | ?x≥0且x∈R,2x≤x2 | ||
| C. | ?x0≥0且x0∈R,${2^{x_0}}≤{x_0}^2$ | D. | ?x0<0且x0∈R,${2^{x_0}}≤{x_0}^2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2) | B. | (-3,2) | C. | (2,4) | D. | (-2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {1,2} | C. | {1} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com