精英家教网 > 高中数学 > 题目详情
设F1、F2为椭圆16x2+25y2=400的焦点,P为椭圆上的一点,则△PF1F2的周长是______,△PF1F2的面积的最大值是______.
由题意知:
椭圆:
x2
25
+
y2
16
=1

a=5,b=4,c=3
△PF1F2周长=2a+2c=10+6=16.
由于F1F2一定,只须高最大即可,结合图形知,
△PF1F2的面积的最大值=
1
2
×F1F2×b=bc=12
故答案为:16;12.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F1,左焦点为F2,若椭圆上存在一点P,满足线段PF1相切于以椭圆的短轴为直径的圆,切点为线段PF1的中点,则该椭圆的离心率为(  )
A.
5
3
B.
2
3
C.
2
2
D.
5
9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△ABC中,AB=AC=1,如果椭圆经过A,B两点,它的一个焦点为C,另一个焦点在AB上,则这个椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若AB是过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAM•kBM=(  )
A.-
c2
a2
B.-
b2
a2
C.-
c2
b2
D.-
a2
b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
25
+
y2
9
=1上的点到左焦点F1距离的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程为
x2
16
+
y2
m2
=1(m>0)
,直线y=
2
2
x
与该椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点,则m的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2分别为椭圆
x2
a2
+
y2
b2
=1
的左、右焦点,点P在椭圆上,△POF2是面积为
3
的正三角形,则b的值是(  )
A.2
2
B.2C.
412
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左、右焦点分别是F1,F2,过点F1的直线l交C于A,B两点,且△ABF2的周长为4
2
.则椭圆C的方程为______.

查看答案和解析>>

同步练习册答案