精英家教网 > 高中数学 > 题目详情
9.已知命题p:?x∈R,x2+2ax+a≤0,则命题p的否定是?x∈R,x2+2ax+a>0.

分析 利用含逻辑连接词的否定是将存在变为任意,同时将结论否定,写出命题的否定.

解答 解:命题p:?x∈R,x2+2ax+a≤0,则命题p的否定是:?x∈R,x2+2ax+a>0,
故答案为:?x∈R,x2+2ax+a>0.

点评 本题考查命题的否定,命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图(1),五边形PABCD是由一个正方形与一个等腰三角形拼接而成,其中∠APD=120°,AB=2,现将△PAD进行翻折,使得平面PAD⊥平面ABCD,连接PB,PC,所得四棱锥P-ABCD如图(2)所示,则四棱锥P-ABCD的外接球的表面积为(  )
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数:
(1)f(x)=(2x2+3)(3x-1)
(2)f(x)=3x•(lnx-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.把曲线的极坐标方程ρ=8sinθ化为直角坐标方程式(  )
A.x2+y2=4B.x2+(y-4)2=16C.x2+y2=1D.y=2x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中,所有正确说法的序号是②④.
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在第一象限是增函数;
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域为$\{y|-3≤y≤\sqrt{3}-1\}$,则a=b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)如果关于x的不等式|x+3|+|x-2|<a的解集不是空集,求参数a的取值范围;
(Ⅱ)已知正实数a,b,且h=min{a,$\frac{b}{{a}^{2}+{b}^{2}}$},求证:0<h≤$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x,y满足不等式组$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值为4,则$\frac{1}{a}+\frac{2}{3b}$的最小值为4..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在边长为2的正方形ABCD中,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,点F在线段AB上运动,则$\overrightarrow{FD}•\overrightarrow{FE}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求经过点$C({6,\frac{π}{6}})$,且平行于极轴的直线的极坐标方程.

查看答案和解析>>

同步练习册答案