【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下图所示(
(吨)为买进蔬菜的质量,
(天)为销售天数):
| 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根据上表数据在下列网格中绘制散点图;
![]()
(Ⅱ)根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.
参考公式:
,
.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b,
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an·2n,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为
,B点表示四月的平均最低气温约为
. 下面叙述不正确的是 ( )
![]()
A. 各月的平均最低气温都在
以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于
的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为:
,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为
.
(1)求直线
和曲线C的普通方程;
(2)在直角坐标系中,过点B(0,1)作直线
的垂线,垂足为H,试以
为参数,求动点H轨迹的参数方程,并指出轨迹表示的曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知圆
的圆心在直线
上,且过点
,与直线
相切.
(
)求圆
的方程.
(
)设直线
与圆
相交于
,
两点.求实数
的取值范围.
(
)在(
)的条件下,是否存在实数
,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥S-ABCD中,底面ABCD为菱形,SD⊥平面ABCD,点E为SD的中点.
(1)求证:直线SB∥平面ACE
(2)求证:直线AC⊥平面SBD.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com