精英家教网 > 高中数学 > 题目详情
已知△ABC中,
AB
=(2,1),
CA
=(3,-4),则△ABC的面积S=
 
考点:数量积表示两个向量的夹角,三角形的面积公式
专题:平面向量及应用
分析:由题意可得向量的模长,进而可得夹角的正弦值,代入面积公式可得.
解答: 解:∵在△ABC中,
AB
=(2,1),
CA
=(3,-4),
∴|
AB
|=
22+12
=
5
,|
CA
|=
32+(-4)2
=5,
∴cosA=-
AB
CA
|
AB
||
CA
|
=-
2
5
5

∴sinA=
1-cos2A
=
11
5
5

∴△ABC的面积S=
1
2
×
5
×5×
11
5
5
=
11
2

故答案为:
11
2
点评:本题考查数量积与向量的夹角,涉及三角形的面积公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=
kex
x
在(1,e)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cosx,则f′(x)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间将10名技工平均分为甲、乙两组来加工某种零件,在单位时间内每个技工加工零件若干个,其中合格零件的个数如表:
1号2号3号4号5号
甲组457910
乙组56789
(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组  技工的技术水平;
(2)评审组从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过14件,则称该车间“生产率高效”,求该车间“生产率高效”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在[0,2]内单调递减,若a=f(-1),b=f(log
1
2
1
4
)
,c=f(lg0.5),则a、b、c之间的大小关系是(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:|2x-3|>1,命题q:log
1
2
(x2+x-5)<0,则?p是?q的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x2
1-x2

(1)求它的定义域; 
(2)判断它的奇偶性;
(3)求证:f(
1
x
)=-f(x);
(4)求f(-
1
4
)+f(-
1
3
)+f(-
1
2
)+f(0)+f(2)+f(3)+f(4)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的图象是圆心在原点的单位圆在一、三象限内的两段圆弧(不含圆弧与坐标轴的交点)则不等式f(x)<f(-x)+x的解集为(  )
A、{x|-
2
5
5
<x<0或
2
5
5
<x<1}
B、{x|-1≤x<-
2
3
3
2
3
3
<x≤1}
C、{x|-1≤x<-
5
2
2
5
2
2
<x≤1}
D、{x|-
2
5
5
<x<
2
5
5
,且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:

(a+2)-
1
3
(1-2a)-
1
3
,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案