精英家教网 > 高中数学 > 题目详情
已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.
(1)若a<0,则对一切x>0,函数f(x)=eax-x<1,这与题设矛盾,
∵a≠0,∴a>0
∵f′(x)=aeax-1,令f′(x)=0,可得x=
1
a
ln
1
a

令f′(x)<0,可得x<
1
a
ln
1
a
,函数单调减;令f′(x)>0,可得x>
1
a
ln
1
a
,函数单调增,
x=
1
a
ln
1
a
时,f(x)取最小值f(
1
a
ln
1
a
)=
1
a
-
1
a
ln
1
a

∴对一切x∈R,f(x)≥1恒成立,则
1
a
-
1
a
ln
1
a
≥1

令g(t)=t-tlnt,则g′(t)=-lnt
当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减
∴t=1时,g(t)取最大值g(1)=1
∴当且仅当
1
a
=1,即a=1时,①成立
综上所述,a的取值集合为{1};
(2)由题意知,k=
eax2-eax1
x2-x1
-1

令φ(x)=f′(x)-k=aeax-
eax2-eax1
x2-x1
,则φ(x1)=-
eax1
x2-x1
[ea(x2-x1)-a(x2-x1)-1]

φ(x2)=
eax2
x2-x1
[ea(x1-x2)-a(x1-x2)-1]

令F(t)=et-t-1,则F′(t)=et-1
当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;
∴t≠0时,F(t)>F(0)=0,即et-t-1>0
ea(x2-x1)-a(x2-x1)-1>0ea(x1-x2)-a(x1-x2)-1>0
eax1
x2-x1
>0,
eax2
x2-x1
>0

∴φ(x1)<0,φ(x2)>0
∴存在c∈(x1,x2),φ(c)=0
∵φ′(x)单调递增,故这样的c是唯一的,且c=
1
a
ln
eax2-eax1
a(x2-x1)

当且仅当x∈(
1
a
ln
eax2-eax1
a(x2-x1)
,x2)时,f′(x)>k
综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(
1
a
ln
eax2-eax1
a(x2-x1)
,x2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-
3
3
)=-
2
3
9

(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1-lnx
(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=px-
p
x
-2lnx

(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)=
2e
x
,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=
1
128000
x3-
3
80
x+8(0<x<120)

(1)当x=64千米/小时时,要行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=1-x2+ln(x+1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由直线,曲线轴所围图形的面积为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线,x∈[0,2π]与直线y=0围成的两个封闭区域面积之和为()
A.0B.1 C.2D.4

查看答案和解析>>

同步练习册答案