精英家教网 > 高中数学 > 题目详情

【题目】

为庆祝“2017年中国长春国际马拉松赛”,某单位在庆祝晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“长春马拉松”和“美丽长春”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“长春马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“美丽长春”标志的概率为.

(Ⅰ)求盒中印有“长春马拉松”标志的小球个数;

(Ⅱ)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.

【答案】(Ⅰ)3;(Ⅱ)分布列见解析,期望为

【解析】试题分析:

(1)利用题意结合对立事件公式可得

(2)利用题意可得的取值为,写出分布列,结合分布列可得期望为

试题解析:

(Ⅰ)设印有“美丽长春”的球有n个,同时抽两球不都是“美丽长春”标志为事件A,则同时抽取两球都是“美丽长春”标志的概率是P()=

由对立事件的概率:P(A)=1-P()=.

P()=,解得n=3.

(Ⅱ)由已知,两种球各三个,η可能取值分别为1,2,3,

P(η=1)=

P(η=2)=··

P(η=3)=1-P(η=1)-P(η=2)=.

η的分布列为

η

1

2

3

P

所以E(η)=1×+2×+3×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.
(1)当m=3时,求A∩(RB)
(2)若A∩B={x|﹣1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).M(x0,y0)在抛物线C2,MC1的切线,切点为A,B(M为原点O,A,B重合于O).x0=1-,切线MA的斜率为-.

(1)p的值;

(2)MC2上运动时,求线段AB中点N的轨迹方程(A,B重合于O,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:

(Ⅰ)求甲流水线样本合格的频率;

(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 分别是 的中点, 上,且

(1)求证: 平面

(2)在线段上上是否存在点,使二面角

的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案