精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中,a3=4,d=2,则a7=(  )
A.12B.13C.11D.14

分析 由等差数列的通项公式可得a7=a3+4d,代值计算即可.

解答 解:∵在等差数列{an}中,a3=4,d=2,
∴a7=a3+4d=4+4×2=12
故选:A

点评 本题考查等差数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$\frac{a+i}{1+i}-\frac{1}{2}$=b(1+i)(其中i为虚数单位,a,b∈R),则a等于(  )
A.-2B.2C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P的直角坐标是(x,y).以平面直角坐标系的原点为极坐标的极点,x轴的正半轴为极轴,建立极坐标系.设点P的极坐标是(ρ,θ),点Q的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q的平面直角坐标是(m,n).
(I)用x,y,θ0表示m,n;
(Ⅱ)若m,n满足mn=1,且θ0=$\frac{π}{4}$,求点P的直角坐标(x,y)满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差大于零的等差数列{an},各项均为正数的等比数列{bn},满足a1=1,b1=2,a4=b2,a8=b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=$\left\{\begin{array}{l}{a_n},n为偶数\\{b_n},n为奇数\end{array}$,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为万,点($\frac{5π}{24}$,0)为它的图象的一个对称中心.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.己知$\frac{a+i}{2i}=\frac{1}{4}b+\frac{1}{2}i(a,b∈R)$.其中i为虚数单位,则a+b=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=a({x-\frac{1}{x}})-2lnx,a∈R$.
(Ⅰ)当a=1时,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn满足an+1=2Sn+6,且a1=6.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)设${b_n}=\frac{{2{a_n}}}{{({3^n}-1)({S_n}+2)}}$,证明:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

同步练习册答案