精英家教网 > 高中数学 > 题目详情
5.已知a,b∈R,i是虚数单位,若a+i=2-bi,则|a+bi|=$\sqrt{5}$.

分析 利用复数相等可得a,b,再利用复数模的计算公式即可得出.

解答 解:∵a,b∈R,i是虚数单位,a+i=2-bi,
∴a=2,1=-b,即a=2,b=-1.
则|a+bi|=|2-i|=$\sqrt{{2}^{2}+(-1)^{2}}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查了复数相等、复数模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={-1,0,1,2,3},B={x|x2-2x-3<0},则 A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x<2}\\{4-\sqrt{x-1},x≥2}\end{array}\right.$,则f($\frac{1}{f(10)}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设正数x、y满足x>y,x+2y=3,则$\frac{1}{x-y}$+$\frac{9}{x+5y}$的最小值为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$tanα=\frac{1}{2}$,则$\frac{sinαcosα}{{{{sin}^2}α-co{s^2}α}}$的值是(  )
A.$-\frac{4}{3}$B.3C.$\frac{4}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中,真命题的个数是(  )
①函数y=sinx,其导函数是偶函数;
②“若x=y,则x2=y2”的逆否命题;
③“x≥2”是“x2-x-2≥0”成立的必要不充分条件;
④命题p:“p:?x0∈R,x02-x0+1<0,则命题p的否定是:“?x∈R,x2-x+1≥0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x.
(1)讨论函数f(x)的单调性;
(2)若f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知锐角△ABC的外接圆半径为$\frac{{\sqrt{2}}}{2}$BC,且AB=2$\sqrt{2}$,AC=3,则BC=(  )
A.$\sqrt{29}$B.$\sqrt{5}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知关于x的一元二次函数f(x)=ax2+bx+2.
(1)若a=-12,b=-2,求不等式 f(x)>0的解集;
(2)当b=-1时,若不等式f(x)<0解集为∅,求a的取值范围.

查看答案和解析>>

同步练习册答案