精英家教网 > 高中数学 > 题目详情
8.平面上画了一些彼此相距20cm的平行线,把一枚半径为4cm的硬币任意掷在这平面上,则硬币与任一条平行线相碰的概率为  $\frac{2}{5}$.

分析 作出两条平行线的垂线段AB,则AB=20,要使硬币与两直线相碰,则硬币对应的圆心必须到直线距离小于4cm,根据几何概型的概率公式求概率即可

解答 解:∵相邻平行线间的距离为20cm,硬币的半径为4cm,
∴作出两条平行线的垂线段AB,则AB=20,要使硬币与两直线相碰,
则硬币对应的圆心必须到直线距离小于4cm,
∴根据几何概型的概率公式可知,硬币与任何一条平行线相碰的概率是$\frac{2×4}{20}=\frac{2}{5}$;
故答案为:$\frac{2}{5}$.

点评 本题主要考查几何概型的概率求法,利用条件将所求概率转化为线段长度之比是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设随机变量的分布列如表所示,且E(ξ)=1.6,则ab=(  )
ξ0123
P0.1ab0.1
A.0.2B.0.1C.0.15D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanx=2,则$\frac{6sin2x+2cos2x}{cos2x-3sin2x}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知随机变量ξ~B(10,0.6),则E(ξ),D(ξ)分别是(  )
A.6和2.4B.4和2.4C.4和3.6D.6和1.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将曲线C按伸缩变换公式$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$变换得曲线方程为x2+y2=1,则曲线C的方程为4x2+9y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a>b,二次三项式ax2+2x+b≥0对一切实数恒成立,又?x0∈R,使a${x}_{0}^{2}$+2x0+b=0,则$\frac{{a}^{2}+{b}^{2}}{a-b}$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+$\sqrt{2}$(m-1)x+$\frac{m}{4}$,现有一组数据(该组数据数量庞大),从中随机抽取10个,绘制所得的茎叶图如图所示,且茎叶图中的数据的平均数为2.
(1)现从茎叶图中的数据中任取4个数据分别替换m的值,求至少有2个数据使得函数f(x)没有零点的概率;
(2)以频率估计概率,若从该组数据中随机抽取4个数据分别替换m的值,记使得函数f(x)没有零点的个数为?,求?的分布列以及数学期望、方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:(1)(1+2i)2
(2)($\frac{1+i}{1-i}$)6+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某校14岁女生的平均身高为154.4cm,标准差是5.1cm,如果身高服从正态分布,那么在该校200个14岁的女生中,身高在164.6cm以上的约有(  )
A.5人B.6人C.7人D.8人

查看答案和解析>>

同步练习册答案