精英家教网 > 高中数学 > 题目详情
18.设随机变量的分布列如表所示,且E(ξ)=1.6,则ab=(  )
ξ0123
P0.1ab0.1
A.0.2B.0.1C.0.15D.0.4

分析 由随机变量的分布列的性质及E(ξ)=1.6,列出方程组,求出a,b,由此能求出ab.

解答 解:由随机变量的分布列的性质及E(ξ)=1.6,得:
$\left\{\begin{array}{l}{0.1+a+b+0.1=1}\\{0×0.1+a+2b+0.3=1.6}\end{array}\right.$,
解得a=0.3,b=0.5,
ab=0.3×0.5=0.15.
故选:C.

点评 本题考查两数乘积的求法,涉及随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=ax(a>1)与函数g(x)=x2图象有三个不同的公共点,则实数a的取值范围是(1,e${\;}^{\frac{2}{e}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P(x,y)在椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$上,则x+y的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是(  )
A.a<0或a>1B.a≤0或a≥1C.0≤a≤1D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知实数x,y均为正数,求证:$(x+y)(\frac{4}{x}+\frac{9}{y})≥25$;
(2)解关于x的不等式x2-2ax+a2-1<0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用秦九韶算法求多项式f(x)=x6+6x4+9x2+208在x=-4时,v2的值为(  )
A.-4B.1C.17D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(Ⅱ)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.经过点A(1,1),并且在两坐标轴上的截距的绝对值相等的直线有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.平面上画了一些彼此相距20cm的平行线,把一枚半径为4cm的硬币任意掷在这平面上,则硬币与任一条平行线相碰的概率为  $\frac{2}{5}$.

查看答案和解析>>

同步练习册答案