分析 x<0时,必有一个交点,x>0时,由ax-x2=0,可得lna=$\frac{2lnx}{x}$,构造函数,确定函数的单调性,根据函数的单调性得出lna的范围即可得出答案.
解答 解:x>0时,由ax-x2=0,可得ax=x2,∴xlna=2lnx,
∴lna=$\frac{2lnx}{x}$,
令h(x)=$\frac{2lnx}{x}$,则h′(x)=$\frac{2-2lnx}{{x}^{2}}$=0,可得x=e,
∴函数在(0,e)上单调增,在(e,+∞)上单调减,
∴h(x)max=h(e)=$\frac{2}{e}$,
∴lna<$\frac{2}{e}$,
∴1<a<e${\;}^{\frac{2}{e}}$
又x<0时,必有一个交点,
∴1<a<e${\;}^{\frac{2}{e}}$时,函数f(x)=ax-x2(a>1)有三个不同的零点,
故答案为:(1,e${\;}^{\frac{2}{e}}$).
点评 本题考查函数的零点,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$ | B. | $cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$ | C. | $cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$ | D. | $sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{2}$ | B. | 2kπ-$\frac{π}{2}$(k∈Z) | C. | kπ(k∈Z) | D. | kπ+$\frac{π}{2}$(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}π$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com