精英家教网 > 高中数学 > 题目详情
若执行如图所示的框图,输入x1=1,x2=2,x3=3,
.
x
=2
,则输出的数等于
 

考点:程序框图
专题:图表型,算法和程序框图
分析:先弄清该算法功能,S=0+(1-2)2=1,i=1,满足条件i<3,执行循环体,依此类推,当i=3,不满足条件i<3,退出循环体,输出所求即可.
解答: 解:由框图的算法功能可知,输出的数为三个数的方差,
S=
(1-2)2+(2-2)2+(3-2)2
3
=
2
3

故答案为:
2
3
点评:本题主要考查了方差的计算,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两个向量
m
n
满足||
m
|=2,|
n
|=1,
m
n
的夹角为60°.
(Ⅰ)求向量
m
-
n
m
的夹角θ;
(Ⅱ)当向量2λ
m
+7
n
与向量
m
+λ
n
垂直时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

AB
AC
=0,|
AB
|=3,|
AC
|=4
(1)求
AB
BC

(2)若D为BC中点,求
AD
BC

(3)若点G为△ABC的重心,求
AG
BC
值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点P(-2,0)且倾斜角为150°以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,曲线C的极坐标方程ρ2-2ρcosθ=15.
(Ⅰ)写出直线l的参数方程和曲线C的直角坐标方程;
(Ⅱ)直线l交曲线C于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,向量
a
=(cosθ,sinθ),向量
b
=(
2
,-1).
(1)
a
b
且0≤θ≤π,求sin2θ的值;
(2)f(θ)=|
a
-
b
|2,若f(θ)≤m对θ∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是真命题的为(  )
A、若x2=1,则x=1
B、若x=y,则
x
=
y
C、若x<y,则x2<y2
D、若
1
x
=
1
y
,则x=y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线m,n,两个平面α,β,下面四个命题错误的是(  )
A、m⊥α,α⊥β⇒m∥β
B、m⊥α,m⊥n⇒n∥α或n?α
C、m⊥α,n∥α⇒m⊥n
D、α⊥β,m⊥β,m?α⇒m∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(75°+α)=
1
3
,则sin(α-15°)+cos(105°-α)的值是(  )
A、
1
3
B、
2
3
C、-
1
3
D、-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)已知a>0,化简
3a4
a
4a3

(2)[125
2
3
+(
1
16
)
-
1
2
+343
1
3
]
1
2
-2π0

查看答案和解析>>

同步练习册答案