精英家教网 > 高中数学 > 题目详情
10.已知M1={第一象限角},M2={锐角},M3={0°~90°的角},M4={小于90°的角},则下面结论正确的是(  )
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M1?M2,M2=M3⊆M4

分析 直接利用角的范围判断集合之间的关系即可.

解答 解:M1={第一象限角},M2={锐角},M3={0°~90°的角},M4={小于90°的角},
可得M2={锐角}=M3={0°~90°的角}⊆M4={小于90°的角},
M2={锐角}=M3={0°~90°的角}⊆M1={第一象限角},
故选:D.

点评 本题考查集合的关系,角的范围的大小,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,a1=2,且a3+a5=40,则{an}的公比q=(  )
A.±5B.±4C.$±\sqrt{5}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心为坐标原点,离心率e=$\frac{\sqrt{6}}{3}$,A1,A2,B1,B2是其四个顶点,且四边形A1B1A2B2的面积为4$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过椭圆C的右焦点F且与椭圆C相交于M,N两点的直线l,使得在直线x=3上可以找到一点B,满足△MNB为正三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在如图所示的程序框图中,若输出的S值等于16,则在该程序框图中的判断框内填写的条件为(  )
A.i>5B.i>6C.i>7D.i>8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数y=ax-2+1(a>0且a≠1)的图象经过定点 P(m,n),且过点Q(m-1,n)的直线l被圆C:x2+y2+2x-2y-7=0截得的弦长为3$\sqrt{2}$,则直线l的斜率为-1或-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.错位相减法求和:an=(2n+1)•3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\underset{lim}{x→1}$($\frac{a}{1-x}$-$\frac{b}{1-{x}^{2}}$)=1,则常数a、b的值为2、4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校乒乓球队男运动员10名和女运动员9名,若要选出男、女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有多少种参赛方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设点M(2,-1),曲线C1与曲线C2交于A,B,求|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案