精英家教网 > 高中数学 > 题目详情

设p:函数的定义域为R; q:不等式,对∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数的取值范围.

解析试题分析:先由函数定义域及不等式的恒成立条件可得中的的范围,然后由复合命题的真假判断得出.
试题解析:恒成立,增函数此时,故命题“p∨q”为真命题,命题“p∧q”为假命题,等价于一真一假,故.
考点:1.函数的定义域;2.不等式的恒成立问题;3.复合命题的真假判断

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.
(1)若(P∪S)⊆P,求实数m的取值范围;
(2)是否存在实数m,使得“x∈P”是“x∈S”的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设p:,q:关于x的不等式x2-4x+m2≤0的解集是空集,试确定实数m的取值范围,使得p或q为真命题,p且q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:复数,复数是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题表示双曲线,命题表示椭圆.
⑴若命题为真命题,求实数的取值范围.
⑵判断命题为真命题是命题为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合,若命题,命题,且必要不充分条件,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题;命题:不等式对任意恒成立.若为真,且为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,设命题P: ;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使命题“P或Q”为真命题的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有下列两个命题:
命题:对恒成立。
命题:函数上单调递增。
若“”为真命题,“”也为真命题,求实数的取值范围。

查看答案和解析>>

同步练习册答案