【题目】已知椭圆
:
的左、右焦点分别是
,
,且
,点
在椭圆
上,
面积的最大值为
.
(1)求椭圆
的方程;
(2)过
的直线交椭圆于
、
两点,求
内切圆半径的取值范围.
科目:高中数学 来源: 题型:
【题目】已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点),
(1)若直线L过抛物线焦点,求线段 |AB|的长度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体
中,点E是棱
的中点,点F是线段
上的一个动点.有以下三个命题:
![]()
①异面直线
与
所成的角是定值;
②三棱锥
的体积是定值;
③直线
与平面
所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料90
,五合板600
,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l
,五合板2
,生产每个书橱而要方木料0.2
,五合板1
,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
,
分别为其左、右焦点,过
的直线与此椭圆相交于
两点,且
的周长为8,椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在平面直角坐标系
中,已知点
与点
,过
的动直线
(不与
轴平行)与椭圆相交于
两点,点
是点
关于
轴的对称点.求证:
(i)
三点共线.
(ii)
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面 ABCD为矩形,侧面为正三角形,且平面
平面
E 为 PD 中点,AD=2.
![]()
(1)证明平面AEC丄平面PCD;
(2)若二面角
的平面角
满足
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,且过点
.
求椭圆的标准方程;
设直线l经过点
且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面
,直线
.给出下列命题:
① 若
,则
; ② 若
,则
;
③ 若
,则
; ④ 若
,则
.
其中是真命题的是_________.(填写所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com