【题目】某家具厂有方木料90
,五合板600
,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l
,五合板2
,生产每个书橱而要方木料0.2
,五合板1
,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
【答案】(1) 只安排生产书桌,最多可生产300张书桌,获得利润24000元;(2) 生产书桌100张、书橱400个,可使所得利润最大
【解析】
(1)设只生产书桌x个,可获得利润z元,则
,由此可得
最大值;
(2)设生产书桌x张,书橱y个,利润总额为z元.
则
,
,由线性规划知识可求得
的最大值.即作可行域,作直线
,平移此直线得最优解.
由题意可画表格如下:
方木料( | 五合板( | 利润(元) | |
书桌(个) | 0.1 | 2 | 80 |
书橱(个) | 0.2 | 1 | 120 |
(1)设只生产书桌x个,可获得利润z元,
则
, ∴
∴
所以当
时,
(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元
(2)设生产书桌x张,书橱y个,利润总额为z元.
则
,∴![]()
在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域
![]()
作直线
,即直线
.
把直线l向右上方平移至
的位置时,直线经过可行域上的点M,
此时
取得最大值
由
解得点M的坐标为
.
∴当
,
时,
(元).
因此,生产书桌100张、书橱400个,可使所得利润最大
所以当
,
时,
.
因此,生产书桌100张、书橱400个,可使所得利润最大.
科目:高中数学 来源: 题型:
【题目】如图
,在高为
的等腰梯形
中,
,且
,
,将它沿对称轴
折起,使平面
平面
,如图
,点
为
的中点,点
在线段
上(不同于
,
两点),连接
并延长至点
,使
.
![]()
(1)证明:
平面
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,
是过定点
且倾斜角为
的直线;在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴,取相同单位长度)中,曲线
的极坐标方程为
.
(1)写出直线
的参数方程,并将曲线
的方程化为直角坐标方程;
(2)若曲线
与直线
相交于不同的两点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
在四边形PBCD中,
,
,
,
,
,沿AB把三角形PAB折起,使P,D两点的距离为10,得到如图
所示图形.
Ⅰ
求证:平面
平面PAC;
Ⅱ
若点E是PD的中点,求三棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有长分别为
、
、
的钢管各3根(每根钢管的质地均匀、粗细相同且富有不同的编号),从中随机抽取
根(假设各钢管被抽取的可能性是均等的,
),再将抽取的钢管相接焊成笔直的一根.
(I)当
时,记事件
,求
;
(II)当
时,若用
表示新焊成的钢管的长度(焊接误差不计),求
的分布列和数学期望![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线C的参数方程和直线
的直角坐标方程;
(2)若直线
与
轴和y轴分别交于A,B两点,P为曲线C上的动点,求△PAB面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com