【题目】在正方体
中,点E是棱
的中点,点F是线段
上的一个动点.有以下三个命题:
![]()
①异面直线
与
所成的角是定值;
②三棱锥
的体积是定值;
③直线
与平面
所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
【答案】B
【解析】
以A点为坐标原点,AB,AD,
所在直线为x轴,y轴,z轴建立空间直角坐标系,
可得
=(1,1,1),
=(t-1,1,-t),可得
=0,可得①正确;
由三棱锥
的底面
面积为定值,且
∥
,可得②正确;
可得
=(t,1,-t),平面
的一个法向量为
=(1,1,1),可得
不为定值可得③错误,可得答案.
解:以A点为坐标原点,AB,AD,
所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体棱长为1,可得B(1,0,0),C(1,1,O),D(0,1,0),
(0,0,1),
(1,0,1),
(1,1,1),
(0,1,1),设F(t,1,1-t),(0≤t≤1),
可得
=(1,1,1),
=(t-1,1,-t),可得
=0,故异面直线
与
所的角是定值,故①正确;
三棱锥
的底面
面积为定值,且
∥
,点F是线段
上的一个动点,可得F点到底面
的距离为定值,故三棱锥
的体积是定值,故②正确;
可得
=(t,1,-t),
=(0,1,-1),
=(-1,1,0),可得平面
的一个法向量为
=(1,1,1),可得
不为定值,故③错误;
故选B.
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
![]()
(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆
的方程.
(2)若
,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,
是过定点
且倾斜角为
的直线;在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴,取相同单位长度)中,曲线
的极坐标方程为
.
(1)写出直线
的参数方程,并将曲线
的方程化为直角坐标方程;
(2)若曲线
与直线
相交于不同的两点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com