精英家教网 > 高中数学 > 题目详情
8.在极坐标系中,点A与点B(-4$\sqrt{2}$,$\frac{3π}{4}$)关于极轴所在直线对称,在极轴上求一点P,使得点P与点A的距离为5.

分析 点B(-4$\sqrt{2}$,$\frac{3π}{4}$)化为B(4,-4),关于极轴的对称点A(4,4),设P(x,0),利用两点之间的距离公式可得:$\sqrt{(4-x)^{2}+{4}^{2}}$=5,解得x即可.

解答 解:点B(-4$\sqrt{2}$,$\frac{3π}{4}$)化为B(4,-4),关于极轴的对称点A(4,4),设P(x,0),则$\sqrt{(4-x)^{2}+{4}^{2}}$=5,解得x=1或7.
∴P(1,0)或(7,0).

点评 本题考查了极坐标化为直角坐标、对称性、两点之间的距离公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知如图1所示的四边形ABCD中,DA⊥AB,点E为AD中点,连接CE,AD=EC=2AB=$\sqrt{2}$BC=2;现将四边形沿着CE进行翻折,使得平面CDE⊥平面ABCE,连接DA,DB,BE得到如图2所示的四棱锥D-ABCE.
(Ⅰ)证明:平面BDE⊥平面BDC;
(Ⅱ)已知点F为侧棱DC上的点,若$\overrightarrow{DF}$=$\frac{1}{5}\overrightarrow{DC}$,求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax3-3x2+b(1<a<2)只有两个零点,则实数loga2+logb2的最小值是(  )
A.$-\sqrt{2}$B.$\frac{3}{2}$$-\sqrt{2}$C.2$\sqrt{2}$D.$\frac{3}{2}$$+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.要从12人中选出5人去参加一项活动,按下列要求,有多少种不同选法
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙至少1人当选.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)对于公共定义域内的任意x恒成立,求实数a的取值范围;
(2)设h(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在等腰梯形PDCB中,DC∥PB,PB=3DC=3,PD=$\sqrt{2}$,DA⊥PB,垂足为A,将△PAD沿AD折起,使得PA⊥AB,得到四棱锥P-ABCD如图2.

(1)证明:平面PAD⊥平面PCD;
(2)点必在棱PB上,平面AMC把四棱锥P-ABCD分成两个几何体,当这两个几何体的体积之比$\frac{{V}_{PM-ACD}}{{V}_{M-ABC}}$=2时,求点B到平面AMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{{\begin{array}{l}{3|{x+1}|-5,(x≤0)}\\{lnx,\;(x>0)}\end{array}}\right.$,若函数y=f(x)-kx+2恰有3个零点,则实数k的取值范围为{k|-3<k≤0或k=e}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$\frac{4}{{C}_{5}^{x}}$-$\frac{1}{{C}_{6}^{x}}$=$\frac{7}{{C}_{7}^{x}}$,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数x,y满足(x-1)2+(y-4)2=1,求$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$的取值范围.

查看答案和解析>>

同步练习册答案