精英家教网 > 高中数学 > 题目详情
3.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)对于公共定义域内的任意x恒成立,求实数a的取值范围;
(2)设h(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求实数m的最大值.

分析 (1)f(x)≥g(x)对于公共定义域内的任意x恒成立?x2-ax-lnx≥0恒成立,x>0?a≤$(x-\frac{lnx}{x})_{min}$,x>0.令u(x)=$x-\frac{lnx}{x}$,利用导数研究其单调性极值与最值即可得出.
(2)由题意知道:h(x)=x2-ax+lnx.则${h}^{′}(x)=2x-a+\frac{1}{x}$=$\frac{2{x}^{2}-ax+1}{x}$(x>0),所以方程2x2-ax+1=0,(x>0)有两个不相等的实数根x1,x2,且${x}_{1}∈(0,\frac{1}{2})$,可得${x}_{2}=\frac{1}{2{x}_{1}}$∈(1,+∞),且$a{x}_{i}=2{x}_{i}^{2}+1$,(i=1,2),而h(x1)-h(x2)=${x}_{2}^{2}-\frac{1}{4{x}_{2}^{2}}-ln(2{x}_{2}^{2})$,(x2>1)设u(x)=${x}^{2}-\frac{1}{4{x}^{2}}-ln(2{x}^{2})$(x>1),利用导数研究其单调性极值与最值即可得出.

解答 解:(1)f(x)≥g(x)对于公共定义域内的任意x恒成立?x2-ax-lnx≥0恒成立,x>0?a≤$(x-\frac{lnx}{x})_{min}$,x>0.
令u(x)=$x-\frac{lnx}{x}$,x>0,则u′(x)=1-$\frac{1-lnx}{{x}^{2}}$=$\frac{{x}^{2}+lnx-1}{{x}^{2}}$,
当x=1时,x2+lnx-1=0;当x>1时,u′(x)>0,此时函数u(x)单调递增;当0<x<1时,u′(x)<0,此时函数u(x)单调递减.
因此当x=1时,函数u(x)取得极小值即最小值,u(1)=1.
∴实数a的取值范围是(-∞,1].
(2)由题意知道:h(x)=x2-ax+lnx.则${h}^{′}(x)=2x-a+\frac{1}{x}$=$\frac{2{x}^{2}-ax+1}{x}$(x>0),
所以方程2x2-ax+1=0,(x>0)有两个不相等的实数根x1,x2,且${x}_{1}∈(0,\frac{1}{2})$,
又∵${x}_{1}{x}_{2}=\frac{1}{2}$,∴${x}_{2}=\frac{1}{2{x}_{1}}$∈(1,+∞),且$a{x}_{i}=2{x}_{i}^{2}+1$,(i=1,2),
而h(x1)-h(x2)=${x}_{1}^{2}-a{x}_{1}+ln{x}_{1}$-$({x}_{2}^{2}-a{x}_{2}+ln{x}_{2})$=${x}_{1}^{2}-(2{x}_{1}^{2}+1)+ln{x}_{1}$-$[{x}_{2}^{2}-(2{x}_{2}^{2}+1)+ln{x}_{2}]$
=${x}_{2}^{2}-{x}_{1}^{2}$+$ln\frac{{x}_{1}}{{x}_{2}}$=${x}_{2}^{2}$-$(\frac{1}{2{x}_{2}})^{2}$+$ln\frac{\frac{1}{2{x}_{2}}}{{x}_{2}}$=${x}_{2}^{2}-\frac{1}{4{x}_{2}^{2}}-ln(2{x}_{2}^{2})$,(x2>1)
设u(x)=${x}^{2}-\frac{1}{4{x}^{2}}-ln(2{x}^{2})$(x>1),则u′(x)=$\frac{(2{x}^{2}-1)^{2}}{2{x}^{3}}$≥0,
∴u(x)>u(1)=$\frac{3}{4}-ln2$,即h(x1)-h(x2)>$\frac{3}{4}-ln2$恒成立,
因此$m≤\frac{3}{4}-ln2$.
∴实数m的最大值为$\frac{3}{4}$-ln2.

点评 本题考查了利用导数研究其单调性极值与最值、恒成立问题的等价转化方法,考查了分析问题与解决问题的能力,考查了变形能力、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)若函数f(x)的图象在x=2处切线的斜率为-1,且不等式f(x)≥2x+m在$[\frac{1}{e},\;\;e]$上有解,求实数m的取值范围;
(2)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知点C在圆O直径BE的延长线上,CA切圆O于点A,CD是∠ACB的平分线,交AE于点F,交AB于点D.
(Ⅰ)求证:CE•AB=AE•AC
(Ⅱ)若AD:DB=1:2,求证:CF=DF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为$\frac{1}{2}$,且各次击鼓出现音乐相互独立.
(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;
(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2=a2+$\sqrt{3}$bc.sinAsinB=cos2$\frac{C}{2}$.
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在极坐标系中,点A与点B(-4$\sqrt{2}$,$\frac{3π}{4}$)关于极轴所在直线对称,在极轴上求一点P,使得点P与点A的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个小商店从某食品有限公司购进10袋白糖,称池内各袋白糖的重量(单位:g),如茎叶图所示,其中有一个数据被污损.
(Ⅰ)若已知这些白糖重量的平均数为497g,求污损处的数据a;
(Ⅱ)现从重量不低于498g的所购各袋白糖中随机抽取2袋,求重量是508g的那袋被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求导函数:f(x)=$\frac{{x}^{3}-2}{2(x-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.偶函数f(x)满足f(x)=f(2-x),且当x∈[-1,0]时,f(x)=cos$\frac{πx}{2}$-1,若函数g(x)=f(x)-logax有且仅有三个零点,则实数a的取值范围是(  )
A.$({\frac{1}{5},\frac{1}{3}})$B.$({\frac{1}{4},\frac{1}{2}})$C.(2,4)D.(3,5)

查看答案和解析>>

同步练习册答案