分析 (Ⅰ)证明:△ACE∽△BCA,即可得出CE•AB=AE•AC
(Ⅱ)证明△ACF∽△BCD,AF=AD,即可证明CF=DF.
解答
(Ⅰ)证明:由C在圆O直径BE的延长线上,CA切圆O于点A,
得△ACE∽△BCA,
∴$\frac{CE}{AC}=\frac{AE}{AB}$,
∴CE•AB=AE•AC; …(5分)
(Ⅱ)证明:∵CD是∠ACB的平分线,
∴∠ACF=∠BCD,
∵AC为圆的切线,∴∠CAE=∠CBD,
∴∠ACF+∠CAE=∠BCD+∠CBD,即∠AFD=∠ADF,∴AF=AD
∴△ACF∽△BCD,
∴$\frac{CF}{CD}=\frac{AF}{BD}=\frac{AD}{BD}$=$\frac{1}{2}$,
∴CF=DF.…(10分)
点评 本题考查圆周角定理,弦切角定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b | B. | a,c | C. | c,b | D. | b,d |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{2}$ | B. | $\frac{3}{2}$$-\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | $\frac{3}{2}$$+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com