精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为60°,且|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=2,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,则实数λ的值为(  )
A.$\frac{1}{2}$B.1C.2D.-$\frac{1}{2}$

分析 根据向量的数量积以及向量垂直的定义和关系建立方程关系即可得到结论.

解答 解:∵向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为60°,且|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=2,
∴向量$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$||$\overrightarrow{AC}$|cos60°=2×2×$\frac{1}{2}$=2,
∵$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,
即λ$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,
则λ$\overrightarrow{AB}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)+$\overrightarrow{AC}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,
即λ$\overrightarrow{AB}$•$\overrightarrow{AC}$-λ$\overrightarrow{AB}$2+$\overrightarrow{AC}$2-$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,
则2λ-4λ+4-2=0,
2λ=2,解得λ=1,
故选:B.

点评 本题主要考查平面向量的数量积的应用以后平面向量的基本定理的应用,根据向量垂直的等价关系建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=b2,设椭圆的左、右焦点分别为F1,F2,上顶点为Q,过椭圆上一点P引圆O的两条切线,切点分别为A、B.
(1)①若$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,求椭圆的离心率e;
②若椭圆上存在点P,使得∠APB=60°,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于M,N,求△MON面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,k),$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知点C在圆O直径BE的延长线上,CA切圆O于点A,CD是∠ACB的平分线,交AE于点F,交AB于点D.
(Ⅰ)求证:CE•AB=AE•AC
(Ⅱ)若AD:DB=1:2,求证:CF=DF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函f(x)=$\frac{1}{2}$ax2+(a-1)x,g(x)=tlnx,数若直线y=e-2x+1是g(x)在x=e2处的切线方程.
(Ⅰ)函数f(x)+g(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)当a>0时,对任意正实数x,不等式f(x)≥g(x)+2k-$\frac{3}{2a}$恒成立,求实数k的取值范围;
(Ⅲ)证明:$\frac{{n}^{n}}{(n+1)^{n+1}}$<$\frac{1}{ne}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为$\frac{1}{2}$,且各次击鼓出现音乐相互独立.
(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;
(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2=a2+$\sqrt{3}$bc.sinAsinB=cos2$\frac{C}{2}$.
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个小商店从某食品有限公司购进10袋白糖,称池内各袋白糖的重量(单位:g),如茎叶图所示,其中有一个数据被污损.
(Ⅰ)若已知这些白糖重量的平均数为497g,求污损处的数据a;
(Ⅱ)现从重量不低于498g的所购各袋白糖中随机抽取2袋,求重量是508g的那袋被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过圆x2+y2=2与外一点P(6,-8),作圆的一条切线PA,A为切点,求线段PA的长.

查看答案和解析>>

同步练习册答案