·ÖÎö £¨1£©¢ÙÈô$\overrightarrow{Q{F}_{1}}$¡Í$\overrightarrow{Q{F}_{2}}$£¬Ôò¡÷QF1F2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉµÃb=c£¬¼´¿ÉµÃ³öÀëÐÄÂÊ£®
¢ÚÓÉÍÖÔ²ÉÏ´æÔÚµãP£¬Ê¹µÃ¡ÏAPB=60¡ã£¬Á¬½ÓOA£¬OB£¬OP£®ÔòOA¡ÍAP£¬OB¡ÍBP£¬ÇÒ¡ÏAPO=30¡ã£®¿ÉµÃOP=2OA=2b£¬2b¡Üa£¬ÀûÓÃÀëÐÄÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨2£©Á¬½ÓOA£¬OB£¬OP£®ÔòOA¡ÍAP£¬OB¡ÍBP£®¿ÉµÃO£¬A£¬P£¬BËĵ㹲Բ£®ÉèP£¨acos¦È£¬bsin¦È£©£¬£¨¦È¡Ê[0£¬2¦Ð£©£©£¬ÆäÔ²µÄ·½³ÌΪ$£¨x-\frac{acos¦È}{2}£©^{2}+£¨y-\frac{bsin¦È}{2}£©^{2}$=$\frac{1}{4}£¨{a}^{2}co{s}^{2}¦È+{b}^{2}si{n}^{2}¦È£©$£¬»¯¼òÓëx2+y2=b2ÁªÁ¢¿ÉµÃ£ºxacos¦È+ybsin¦È=b2£¬¼´ÎªÖ±ÏßABµÄ·½³Ì£®£¨cos¦È•sin¦È¡Ù0£©£®·Ö±ðÁîy=0£¬x=0£¬¿ÉµÃM$£¨\frac{{b}^{2}}{acos¦È}£¬0£©$£¬N$£¨0£¬\frac{b}{sin¦È}£©$£®ÔÙÀûÓÃÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢±¶½Ç¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¢ÙÈô$\overrightarrow{Q{F}_{1}}$¡Í$\overrightarrow{Q{F}_{2}}$£¬Ôò¡÷QF1F2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬![]()
¡àb=c£¬¡àe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£®
¢ÚÓÉÍÖÔ²ÉÏ´æÔÚµãP£¬Ê¹µÃ¡ÏAPB=60¡ã£¬
Á¬½ÓOA£¬OB£¬OP£®ÔòOA¡ÍAP£¬OB¡ÍBP£¬ÇÒ¡ÏAPO=30¡ã£®
¡àOP=2OA=2b£¬¡à2b¡Üa£¬
¡à$e=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$¡Ý$\frac{\sqrt{3}}{2}$£¬ÓÖe£¼1£¬
¡à$e¡Ê[\frac{\sqrt{3}}{2}£¬1£©$£®
£¨2£©Á¬½ÓOA£¬OB£¬OP£®ÔòOA¡ÍAP£¬OB¡ÍBP£®
¿ÉµÃO£¬A£¬P£¬BËĵ㹲Բ£®
ÉèP£¨acos¦È£¬bsin¦È£©£¬£¨¦È¡Ê[0£¬2¦Ð£©£©£¬ÆäÔ²µÄ·½³ÌΪ$£¨x-\frac{acos¦È}{2}£©^{2}+£¨y-\frac{bsin¦È}{2}£©^{2}$=$\frac{1}{4}£¨{a}^{2}co{s}^{2}¦È+{b}^{2}si{n}^{2}¦È£©$£¬
»¯Îªx2+y2-xacos¦È-ybsin¦È=0£¬Óëx2+y2=b2ÁªÁ¢¿ÉµÃ£º
xacos¦È+ybsin¦È=b2£¬¼´ÎªÖ±ÏßABµÄ·½³Ì£®£¨cos¦È•sin¦È¡Ù0£©£®
·Ö±ðÁîy=0£¬x=0£¬¿ÉµÃM$£¨\frac{{b}^{2}}{acos¦È}£¬0£©$£¬N$£¨0£¬\frac{b}{sin¦È}£©$£®
S¡÷OMN=$\frac{1}{2}\frac{{b}^{2}}{a|cos¦È|}•\frac{b}{|sin¦È|}$=$\frac{{b}^{3}}{a•|sin2¦È|}$¡Ý$\frac{{b}^{3}}{a}$£®
µ±cos¦Èsin¦È=0ʱ²»·ûºÏÌâÒ⣬ÉáÈ¥£®
¡à¡÷OMNÃæ»ýµÄ×îСֵΪ$\frac{{b}^{3}}{a}$£®´Ëʱsin2¦È=¡À1£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇÐÎÊÌâ¡¢Á½Ô²µÄ¸ùÖáÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢±¶½Ç¹«Ê½µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $[2\sqrt{3}£¬+¡Þ£©$ | B£® | $£¨-¡Þ£¬2\sqrt{3}]$ | C£® | £¨-¡Þ£¬2$\sqrt{3}$£©¡È£¨2$\sqrt{3}$£¬+¡Þ£© | D£® | $[-2\sqrt{3}£¬2\sqrt{3}]$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÓÅÐã | ·ÇÓÅÐã | ºÏ¼Æ | |
| ¼×°à | 11 | 50 | 61 |
| ÒÒ°à | 29 | 30 | 59 |
| ºÏ¼Æ | 40 | 80 | 120 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¬b | B£® | a£¬c | C£® | c£¬b | D£® | b£¬d |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | 2 | D£® | -$\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com