精英家教网 > 高中数学 > 题目详情
2.已知F1、F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,以BF2为直径的圆D经过椭圆的上顶点A,且|$\overrightarrow{B{F}_{2}}$|=2|$\overrightarrow{A{F}_{1}}$|,$\overrightarrow{{F}_{1}A}•\overrightarrow{BA}$=24.
(1)求椭圆C的方程;
(2)设圆心在y轴上的圆M与椭圆在x轴的上方有两个交点P1,P2,且圆在这两个交点处的两条切线互相垂直且经过两个不同的焦点,求P1P2

分析 (1)利用AB⊥AF2且|$\overrightarrow{B{F}_{2}}$|=2|$\overrightarrow{A{F}_{1}}$|,可得F1为BF2的中点,可得a,c的关系,再由向量的数量积的坐标表示,解方程可得a,b,进而得到椭圆方程;
(2)设圆心在y轴上的圆C与椭圆$\frac{{x}^{2}}{2}$+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,运用向量的数量积的坐标表示,计算可得x1,进而得到|P1P2|.

解答 解:(1)由题意知F1(-c,0),F2(c,0),A(0,b).
因为AB⊥AF2,在Rt△ABF2中,|$\overrightarrow{B{F}_{2}}$|=2|$\overrightarrow{A{F}_{1}}$|,
即有F1为BF2的中点,
又|AF1|=$\sqrt{{b}^{2}+{c}^{2}}$=a,|BF2|=2a=4c,即a=2c.
即有B(-3c,0),$\overrightarrow{BA}$=(3c,b),$\overrightarrow{{F}_{1}A}$=(c,b),
$\overrightarrow{{F}_{1}A}•\overrightarrow{BA}$=24,即为3c2+b2=24,由a2-b2=c2,a=2c,
解得a=4,b=2$\sqrt{3}$,
即有椭圆C方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1;
(2)设圆心在y轴上的圆M与椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1相交,
P1(x1,y1),P2(x2,y2)是两个交点,
y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2
由圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|,
由(Ⅰ)知F1(-2,0),F2(2,0),
所以$\overrightarrow{{F}_{1}{P}_{1}}$=(x1+2,y1),$\overrightarrow{{F}_{2}{P}_{2}}$=(-x1-2,y1),
再由F1P1⊥F2P2,得-(x1+2)2+y12=0,
由椭圆方程得12(1-$\frac{{{x}_{1}}^{2}}{16}$)=(x1+2)2,即7x12+16x1-32=0,
解得x1=$\frac{-8+12\sqrt{2}}{7}$或x1=$\frac{-8-12\sqrt{2}}{7}$.
故|P1P2|=2|x1|=$\frac{24\sqrt{2}-16}{7}$或$\frac{24\sqrt{2}+16}{7}$.

点评 本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{-x,x<0}\end{array}\right.$,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3-x1的取值范围为(  )
A.(2,$\frac{5}{2}$]B.(2,$\frac{9}{4}$]C.(2,$\frac{11}{4}$]D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)若函数f(x)的图象在x=2处切线的斜率为-1,且不等式f(x)≥2x+m在$[\frac{1}{e},\;\;e]$上有解,求实数m的取值范围;
(2)若函数f(x)的图象与x轴有两个不同的交点A(x1,0),B(x2,0),且0<x1<x2,求证:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)与y=f-1(x)互为反函数,又y=f-1(x+1)与y=g(x)的图象关于直线y=x对称,若f(x)=${log_{\frac{1}{2}}}({x^2}+2)$(x>0),则g(x)=log${\;}_{\frac{1}{2}}$(x2+2)-1(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,k),$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{3}}{2}$,其左右焦点分别为F1、F2,|F1F2|=2$\sqrt{3}$.设点M(x1,y1),N(x2,y2)是椭圆上不同两点,且这两点与坐标原点的连线斜率之积-$\frac{1}{4}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:x12+x22为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知点C在圆O直径BE的延长线上,CA切圆O于点A,CD是∠ACB的平分线,交AE于点F,交AB于点D.
(Ⅰ)求证:CE•AB=AE•AC
(Ⅱ)若AD:DB=1:2,求证:CF=DF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为$\frac{1}{2}$,且各次击鼓出现音乐相互独立.
(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;
(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求导函数:f(x)=$\frac{{x}^{3}-2}{2(x-1)^{2}}$.

查看答案和解析>>

同步练习册答案