精英家教网 > 高中数学 > 题目详情
4.若集合A={x∈R|x2-3x≤0},B={1,2},则A∩B=(  )
A.{x|0≤x≤3}B.{1,2}C.{0,1,2}D.{0,1,2,3}

分析 先分别求出集合A,B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={x∈R|x2-3x≤0}={x|0≤x≤3},
B={1,2},
∴A∩B={1,2}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{\sqrt{5-ax}}{a-2}$(a∈A),若f(x)在区间(0,1]上是减函数,则集合A可以是(  )
A.(-∞,0)B.[1,2)C.(-1,5]D.[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x>0时,f(x)=$\frac{12}{x}$+4x的最小值为(  )
A.8$\sqrt{3}$B.8C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,多面体ABCDEF中,已知ABCD是边长为3的正方形,△FBC中BC边上的高为FH,EF⊥FH,EF∥AB,
(1)求证:平面FBC⊥平面ABCD;
(2)若FH=2,EF=$\frac{3}{2}$,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知由实数组成的等比数列{an}的前项和为Sn,且满足8a4=a7,S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N*,bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=2,则直线BC1与平面BB1D1D所成角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(ui,vi)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断(  )
A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题:“?x∈R,x2-ax+1<0”的否定为?x∈R,x2-ax+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设i是虚数单位,复数i(1+ai)为纯虚数,则实数a为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案