精英家教网 > 高中数学 > 题目详情
19.已知由实数组成的等比数列{an}的前项和为Sn,且满足8a4=a7,S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N*,bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$,求数列{bn}的前n项和Tn

分析 (1)设等比数列{an}的公比为q,由8a4=a7,可得8=$\frac{{a}_{7}}{{a}_{4}}$=q3,解得q.由S7=254,$\frac{{a}_{1}({2}^{7}-1)}{2-1}$=254,解得a1
(2)bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$=$\frac{2n+1}{{n}^{2}(n+1)^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,利用“裂项求和”方法即可得出.

解答 解:(1)设等比数列{an}的公比为q,
由8a4=a7,可得8=$\frac{{a}_{7}}{{a}_{4}}$=q3,解得q=2.
∵S7=254,∴$\frac{{a}_{1}({2}^{7}-1)}{2-1}$=254,解得a1=2.
∴an=2n
(2)bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$=$\frac{2n+1}{{n}^{2}(n+1)^{2}}$=$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,
∴Tn=$(1-\frac{1}{{2}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}})$+…+$(\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}})$=1-$\frac{1}{(n+1)^{2}}$.

点评 本题考查了等比数列的通项公式与求和公式、“裂项求和”方法、对数函数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若三条直线ax+y+1=0,y=3x,x+y=4,交于一点,则a的值为(  )
A.4B.-4C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-6x2+9x,g(x)=$\frac{1}{3}$x3-$\frac{a+1}{2}$x2+ax-$\frac{1}{3}$(a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为(  )
A.(1,$\frac{9}{4}$]B.[9,+∞)C.(1,$\frac{9}{4}$]∪[9,+∞)D.[$\frac{3}{2}$,$\frac{9}{4}$]∪[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,CE⊥BD于E
(Ⅰ) 求证:BD⊥AC;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{{tan{{12}°}+tan{{18}°}}}{{1-tan{{12}°}•tan{{18}°}}}$=(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x∈R|x2-3x≤0},B={1,2},则A∩B=(  )
A.{x|0≤x≤3}B.{1,2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在y轴上的双曲线C的中心是原点O,离心率等于$\frac{{\sqrt{5}}}{2}$,以双曲线C的一个焦点为圆心,2为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{y^2}{4}-{x^2}=1$C.${y^2}-\frac{x^2}{4}=1$D.$\frac{y^2}{16}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC的内角A,B,C的对边分别为a,b,c,若$cosC=\frac{{2\sqrt{2}}}{3}$,bcosA+acosB=2,则△ABC的外接圆的面积为(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,P,Q为双曲线C右支上的两点,若$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{{F}_{2}Q}$,且$\overrightarrow{{F}_{1}Q}$•$\overrightarrow{PQ}$=0,则该双曲线的离心率是(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{17}}{3}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

同步练习册答案