精英家教网 > 高中数学 > 题目详情
13.数列{an}中,a1=1,前n项和是Sn,Sn=2an-1,n∈N*
(1)求a2,a3,a4
(2)求通项公式an
(3)求证:SnSn+2<Sn+12

分析 (1)由Sn=2an-1,n∈N*.分别取n=2,3,4,即可得出.
(2)利用递推关系即可得出.
(3)利用(2),通过作差即可证明.

解答 解:(1)∵a1=1,Sn=2an-1,
∴当n=2时,a1+a2=2a2-1,∴a2=2
当n=3时,a1+a2+a3=2a3-1,∴a3=4
当n=4时,a1+a2+a3+a4=2a4-1,∴a4=8.
(2)∵Sn=2an-1,n∈N*
∴Sn-1=2an-1-1,n≥2,n∈N*
①-②得:an=2an-2an-1(n≥2,n∈N*),即an=2an-1(n≥2,n∈N*),
∴数列{an}是以1为首项,2为公比的等比数列,其通项公式${a_n}={2^{n-1}}$.
(3)证明:${S_n}=2{a_n}-1={2^n}-1$,
${S_n}{S_{n+2}}=({2^n}-1)({2^{n+2}}-1)={2^{2n+2}}-{2^{n+2}}-{2^n}+1$,
$S_{n+1}^2={({2^{n+1}}-1)^2}={2^{2n+2}}-{2^{n+2}}+1$,
∴$S_{n+1}^2-{S_n}{S_{n+2}}={2^n}>0$,∴${S_n}{S_{n+2}}<S_{n+1}^2$.

点评 本题考查了等比数列的通项公式、数列递推关系、作差法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ax-3+bsinx+x2+8(ab≠0),且f(-2)=3,则f(2)=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.关于统计数据的分析,有以下几个结论:
①一组数不可能有两个众数;
②将一组数据中的每个数据都减去同一个数后,方差没有变化;
③调查剧院中观众观看时的感受,从50排(每排人数相同)中任意取一排的人参加调查,属于分层抽样;
④如图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60]的汽车大约是60辆.
这4种说法中正确的个数是(  )
A.2B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足,线段PD中点为M,当点P在圆上运动时,点M到直线l:x-y+1=0距离最大值为(  )
A.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$B.$\frac{{\sqrt{10}-\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角为A,B,C,且sinC=sinB+sin(A-B).
(I)求A的大小;
(II)若a=$\sqrt{7}$,△ABC的面积S△ABC=$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入部分数据,如表:
(1)请将上表数据补充完整,填写在答题卡相应的位置,并求f(x)的解析式;
(2)将函数f(x)的图象上每一点的纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变,得到函数g(x)的图象.试求g(x)在区间[π,$\frac{5π}{2}$]上的最值.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2π   $\frac{13π}{2}$
 f(x) 0 4 -4 0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+a(1-$\frac{1}{x}$),a∈R.
(1)若a=-1,试求f(x)最小值;
(2)若?x≥1都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求(∁UA)∩(∁UB)=(  )
A.{x|-2≤x≤3}B.{x|x<-2或x>4}C.{x|-3≤x≤4}D.{x|x<-3或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义在(-1,1)上的偶函数,当x∈[0,1)时f(x)=lg$\frac{1}{1+x}$,
(1)求f(x)的解析式;
(2)探求f(x)的单调区间,并证明f(x)的单调性.

查看答案和解析>>

同步练习册答案