分析 根据绝对值的定义,将题中函数去绝对值化简成分段函数,再根据一次函数的单调性加以讨论,即可得到函数的最大、最小值.
解答 解:根据题意,可得
当x≤-1时,y=|x-3|-|x+1|=3-x-(-x-1)=4;
当-1<x≤3时,y=|x-3|-|x+1|=3-x-(x+1)=-2x+2;
当x≥3时,y=|x-3|-|x+1|=x-3-(x+1)=-4
∴化简函数为分段函数,得y=$\left\{\begin{array}{l}{4,x≤-1}\\{2-2x,-1<x≤3}\\{-4,x≥3}\end{array}\right.$,
∵在区间(-1,3]上,函数解析式为y=-2x+2,为单调递减函数,
∴在区间(-1,3]上,-2×3+2≤y<-2×(-1)+2,即-4≤y<4,
因此可得:当x≤-1时,函数有最大值为4.
点评 本题给出含有绝对值的函数,求函数的最大值和最小值.着重考查了绝对值的定义、一次函数的单调性和函数最值求法等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
| 日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
| 昼夜温差x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
| 就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 原命题、否命题 | B. | 原命题、逆命题 | C. | 原命题、逆否命题 | D. | 逆命题、否命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com