精英家教网 > 高中数学 > 题目详情
15.已知在ABC中,角A,B,C所对的边分别为a,b,c,b(b-$\sqrt{3}$c)=(a-c)(a+c),且∠B为钝角.
(1)求角A的大小;
(2)若a=$\frac{1}{2}$,求b-$\sqrt{3}$c的取值范围.

分析 (1)利用余弦定理即可求出角A的大小.
(2)由a=$\frac{1}{2}$,正弦定理把b,c用角表示出来,利用三角函数的有界限即可求b-$\sqrt{3}$c的取值范围.

解答 解:(1)由b(b-$\sqrt{3}$c)=(a-c)(a+c),即${b}^{2}-\sqrt{3}bc={a}^{2}-{c}^{2}$
根据余弦定理cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2}$,
∵0$<A<\frac{π}{2}$,
∴A=$\frac{π}{6}$.
(2)∵a=$\frac{1}{2}$,A=$\frac{π}{6}$,
由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
可得:b=sinB,c=sinC.
那么:b-$\sqrt{3}$c=sinB-$\sqrt{3}$sinC=sin($\frac{5π}{6}$-C)-$\sqrt{3}$sinC=$\frac{1}{2}$cosC-$\frac{\sqrt{3}}{2}$sinC=cos($\frac{π}{3}+C$)
∵∠B为钝角.
∴A=$\frac{π}{6}$,
∴$0<C<\frac{π}{3}$
那么:$\frac{π}{3}<C+\frac{π}{3}<\frac{2π}{3}$.
则cos($\frac{π}{3}+C$)∈(-$\frac{1}{2}$,$\frac{1}{2}$)
即b-$\sqrt{3}$c的取值范围是($-\frac{1}{2}$,$\frac{1}{2}$).

点评 本题考查了正余弦定理的灵活运用和三角函数有界限求解取值范围问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求 函数y=|x-3|-|x+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知随机变量X服从二项分布,X~B(5,$\frac{2}{3}$),则P(X=2)等于$\frac{40}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-3|-5,g(x)=|x+2|-2.
(1)求不等式f(x)≤2的解集;
(2)若不等式f(x)-g(x)≥m-3有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+a|-|x-1|.
(Ⅰ)当a=-2时,求不等式$f(x)≥\frac{1}{2}$的解集;
(Ⅱ)若f(x)≥2有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为?x0∈(1,+∞),x03+16≤8x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的取值范围为[6,18].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)求值:sin(-$\frac{31π}{6}$);
(Ⅱ)已知f(α)=$\frac{sin(α-\frac{π}{2})tan(α-\frac{π}{2})}{cos(-α-π)}$,若sinα=-$\frac{1}{5}$,且α为第三象限角,求f(α)的值.

查看答案和解析>>

同步练习册答案