精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系 中,过椭圆 )右焦点的直线 两点, 的中点,且 的斜率为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ) 上的两点,若四边形 . 的对角线 ,求四边形 面积的最大值.

【答案】解:(Ι)设 ,(1)-(2)得:

,设 ,因为P为AB的中点,且OP的斜率为 ,所以 ,即 ,所以可以解得 ,即 ,即 ,又因为 ,所以 ,所以M的方程为 .

(Ⅱ)因为CD⊥AB,直线AB方程为 ,所以设直线CD方程为

代入 得: ,即 ,所以可得

;将 代入 得: ,设

= ,又因为 ,即 ,所以当 时,|CD|取得最大值4,所以四边形ACBD面积的最大值为


【解析】(1)利用“点差法”结合椭圆的方程M求出直线的斜率的代数式,因为直线的方程已知进而可求出焦点F的坐标,利用椭圆里a、b、c的关系联立以上两个方程即可求出a、b的值进而得到椭圆的方程。(2)根据题意联立直线和椭圆的方程即可得出两个点的坐标,再利用弦长公式以及两点间的距离公式代入数值分别求出|AB|、|CD|的代数式,因为直线和椭圆有两个交点所以联立消元后的方程判别式大于零,因此求出m的取值范围,然后把以上式子代入到四边形的面积公式,结合二次函数的最值情况即可求出面积的最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:

(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求 的最大值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的所有棱长都相等且侧棱垂直于底面沿棱柱侧面经过棱到点的最短路线长为设这条最短路线与的交点为

(1)求三棱柱的体积

(2)证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,且与轴有唯一的交点.

(1)求的表达式;

(2)设函数,若上是单调函数,求实数的取值范围;

(3)设函数,记此函数的最小值为,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a﹣2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

同步练习册答案