精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2,若|AF1|,|A B|,|AF2|成等差数列,则此双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,等差数列与等比数列,圆锥曲线的定义、性质与方程
分析:运用等差数列的性质,可得|AF1|+|AF2|=2|AB|=4a,即有2c=4a,由离心率公式即可得到.
解答: 解:|AF1|,|AB|,|AF2|成等差数列,
则|AF1|+|AF2|=2|AB|=4a,
即有|F1F2|=4a,
即2c=4a,
e=
c
a
=2.
故答案为:2.
点评:本题考查双曲线的方程和性质,考查离心率的求法,考查等差数列的性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,且a=bcosC+
3
3
csinB

(1)求B;
(2)若c=1,a=3,AC的中点为D,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=ax2的焦点为F(0,1),P为该抛物线上的动点,则a=
 
;线段FP中点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上单调递减的奇函数,则满足不等式f[f(t-1)]<0的实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知圆C的圆心C(2
2
π
4
)
,半径r=2
2

(Ⅰ)求圆C的极坐标方程;
(Ⅱ)若α∈[0,
π
4
]
,直线l的参数方程为
x=3+tcosα
y=1+tsinα
(t为参数),直线l交圆C于A、B 两点,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某袋中有10个乒乓球,其中有7个新、3个旧球,从袋中任取3个来用,用后放回袋中(新球用后变为旧球),记此时袋中旧球个数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)对任意实数x、y,恒有f(x)+f(y)=f(x+y),且当x>0时,有f(x)<0.
(Ⅰ)求证:f(x)为奇函数且在R上是减函数;
(Ⅱ)若正数x,y满足
1
x
+
4
y
=1,且f(x)+f(y)+f(1-m)<0恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R
(其中ω>0)
(I)求函数f(x)的值域;
(II)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为
π
2
,求函数y=f(x)的单调增区间.
(Ⅲ)设g(x)=-4cos2x-sinx+m,若对任意x1∈R,总是存在x2∈[0,
π
2
],使得f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足:x+y=
π
4
且x,y≠kπ+
π
2
(k∈Z),则(1+tanx)(1+tany)=(  )
A、-2B、2C、-1D、1

查看答案和解析>>

同步练习册答案